NetWorker 9.2 – A Focused Release

 NetWorker  Comments Off on NetWorker 9.2 – A Focused Release
Jul 292017

NetWorker 9.2 has just been released. Now, normally I pride myself for having kicked the tyres on a new release for weeks before it’s come out via the beta programmes, but unfortunately my June, June and July taught me new definitions of busy (I was busy enough that I did June twice), so instead I’ll be rolling the new release into my lab this weekend, after I’ve done this initial post about it.

bigStock Focus

I’ve been working my way through NetWorker 9.2’s new feature set, though, and it’s impressive.

As you’ll recall, NetWorker 9.1 introduced NVP, or vProxy – the replacement to the Virtual Backup Appliance introduced in NetWorker 8. NVP is incredibly efficient for backup and recovery operations, and delivers hyper-fast file level recovery from image level recovery. (Don’t just take my written word for it though – check out this demo where I recovered almost 8,000 files in just over 30 seconds.)

NetWorker 9.2 expands on the virtual machine backup integration by adding the capability to perform Microsoft SQL Server application consistent backup as part of a VMware image level backup. That’s right, application consistent, image level backup. That’s something Avamar has been able to do for a little while now, and it’s now being adopted in NetWorker, too. We’re starting with Microsoft SQL Server – arguably the simplest one to cover, and the most sought after by customers, too – before tackling other databases and applications. In my mind, application consistent image level backup is a pivot point for simplifying data protection – in fact, it’s a topic I covered as an emerging focus for the next several years of data protection in my book, Data Protection: Ensuring Data Availability. I think in particular app-consistent image level backups will be extremely popular in smaller/mid-market customer environments where there’s not guaranteed to be a dedicated DBA team within the IT department.

It’s not just DBAs that get a boost with NetWorker 9.2 – security officers do, too. In prior versions of NetWorker, it was possible to integrate Data Domain Retention Lock via scripting – now in NetWorker 9.2, it’s rolled into the interface itself. This means you’ll be able to establish retention lock controls as part of the backup process. (For organisations not quite able to go down the path of having a full isolated recovery site, this will be a good mid-tier option.)

Beyond DBAs and security officers, those who are interested in backing up to the cloud, or in the cloud, will be getting a boost as well – CloudBoost 2.2 has been introduced with NetWorker 9.2, and this gives Windows 64-bit clients the CloudBoost API as well, allowing a direct to object storage model from both Windows and Linux (which got CloudBoost client direct in a earlier release). What does this mean? Simple: It’s a super-efficient architecture leveraging an absolute minimum footprint, particularly when you’re running IaaS protection in the Cloud itself. Cloud protection gets another option as well – support for DDVE in the Cloud: AWS or Azure.

NMC isn’t left out – as NetWorker continues to scale, there’s more information and data within NMC for an administrator or operator to sort through. If you’ve got a few thousand clients, or hundred of client groups created for policies and workflows, you might not want to scroll through a long list. Hence, there’s now filtering available in a lot of forms. I’m always a fan of speeding up what I have to do within a GUI, and this will be very useful for those in bigger environments, or who prefer to find things by searching rather than visually eye-balling while scrolling.

If you’re using capacity licensing, otherwise known as Front End TB (FETB) licensing, NetWorker now reports license utilisation estimation. You might think this is a synch, but it’s only a synch if you count whitespace everywhere. That’s not something we want done. Still, if you’ve got capacity licensing, NetWorker will now keep track of it for you.

There’s a big commitment within DellEMC for continued development of automation options within the Data Protection products. NetWorker has always enjoyed a robust command line interface, but a CLI can only take you so far. The REST API that was introduced previously continues to be updated. There’s support for the Data Domain Retention Lock integration and the new application consistent image level backup options, just to name a couple of new features.

NetWorker isn’t just about the core functionality as well – there’s also the various modules for databases and applications, and they’ve not been left unattended, either.

SharePoint and Exchange get tighter integration with ItemPoint for granular recovery. Previously it was a two step process to mount the backup and launch ItemPoint – now the NMM recovery interface can automatically start ItemPoint, directing it to the mounted backup copies for processing.

Microsoft SQL Server is still of course supported for traditional backup/recovery operations via the NetWorker Module for Microsoft, and it’s been updated with some handy new features. Backup an recovery operations no longer need Windows administrative privileges in all instances, and you can do database exclusions now via wild-cards – very handy if you’ve got a lot of databases on a server following a particular naming convention and you don’t need to protect them all, or protect them all in a single backup stream. You also get the option during database recovery now to terminate other user access to the database; previously this had to be managed manually by the SQL administrator for the target database – now it can be controlled as part of the recovery process. There’s also a bunch of new options for SQL Always On Availability Groups, and backup promotion.

In addition to the tighter ItemPoint integration mentioned previously for Exchange, you also get the option to do ItemPoint/Granular Exchange recovery from a client that doesn’t have Exchange installed. This is particularly handy when Exchange administrators want to limit what can happen on an Exchange server. Continuing the tight Data Domain Cloud Tier integration, NMM now handles automatic and seamless recall of data from Cloud Tier should it be required as part of a recovery option.

Hyper-V gets some love, too: there’s processes to remove stale checkpoints, or merge checkpoints that exceed a particular size. Hyper-V allows a checkpoint disk (a differencing disk – AVHDX file) to grow to the same size as its original parent disk. However, that can cause performance issues and when it hits 100% it creates other issues. So you can tell NetWorker during NMM Hyper-V backups to inspect the size of Hyper-V differencing disks and automatically merge if they exceed a certain watermark. (E.g., you might force a merge when the differencing disk is 25% of the size of the original.) You also get the option to exclude virtual hard disks (either VHD or VHDX format) from the backup process should you desire – very handy for virtual machines that have large disks containing transient or other forms of data that have no requirement for backup.

Active Directory recovery browsing gets a performance boost too, particularly for large AD trees.

SAP IQ (formerly known as Sybase IQ) gets support in NetWorker 9.2 NMDA. You’ll need to be running v16 SP11 and a simplex architecture, but you’ll get a variety of backup and recovery options. A growing trend within database vendors is to allow designation of some data files within the database as read-only, and you can choose to either backup or skip read-only data files as part of a SAP IQ backup, amongst a variety of other options. If you’ve got a traditional Sybase ASE server, you’ll find that there’s now support for backing up database servers with >200 databases on them – either in sequence, or with a configured level of parallelism.

DB2 gets some loving, too – NMDA 9.1 gave support for PowerLink little-endian DB2 environments, but with 9.2 we also get a Boost plugin to allow client-direct/Boost backups for DB2 little-endian environments.

(As always, there’s also various fixes included in any new release, incorporating fixes that were under development concurrently in earlier releases.)

As always, when you’re planning to upgrade NetWorker, there’s a few things you should do as a matter of course. There’s a new approach to making sure you’re aware of these steps – when you go to and click to download the NetWorker server installer or either Windows or Linux, you’ll initially find yourself redirected to a PDF: the NetWorker 9.2 Recommendations, Training and Downloads for Customers and Partners. Now, I admit – in my lab I have a tendency sometimes to just leap in and start installing new packages, but in reality when you’re using NetWorker in a real environment, you really do want to make sure you read the documentation and recommendations for upgrades before going ahead with updating your environment. The recommendations guide is only three pages, but it’s three very useful pages – links to technical training, references to the documentation portfolio, where to find NetWorker focused videos on the Community NetWorker and YouTube, and details about licensing and compatibility. There’s also very quick differences details between NetWorker versions, and finally the download location links are provided.

Additional key documentation you should – in my mind, you must – review before upgrading include the release notes, the compatibility guide, and of course, the ever handy updating from a prior version guide. That’s in addition to checking standard installation guides.

Now if you’ll excuse me, I have a geeky data protection weekend ahead of me as I upgrade my lab to NetWorker 9.2.

Mar 092016

I’ve been working with backups for 20 years, and if there’s been one constant in 20 years I’d say that application owners (i.e., DBAs) have traditionally been reluctant to have other people (i.e., backup administrators) in control of the backup process for their databases. This leads to some environments where the DBAs maintain control of their backups, and others where the backup administrators maintain control of the database backups.


So the question that many people end up asking is: which way is the right way? The answer, in reality is a little fuzzy, or, it depends.

When we were primarily backing up to tape, there was a strong argument for backup administrators to be in control of the process. Tape drives were a rare commodity needing to be used by a plethora of systems in a backup environment, and with big demands placed on them. The sensible approach was to fold all database backups into a common backup scheduling system so resources could be apportioned efficiently and fairly.

DB Backups with Tape

Traditional backups to tape via a backup server

With limited tape resources and a variety of systems to protect, backup administrators needed to exert reasonably strong controls over what backed up when, and so in a number of organisations it was common to have database backups controlled within the backup product (e.g., NetWorker), with scheduling negotiated between the backup and database administrators. Where such processes have been established, they often continue – backups are, of course, a reasonably habitual process (and for good cause).

For some businesses though, DBAs might feel there was not enough control over the backup process – which might be agreed with based on the mission criticality of the applications running on top of the database, or because of the perceived licensing costs associated with using a plugin or module from the backup product to backup the database. So in these situations if a tape library or drives weren’t allocated directly to the database, the “dump and sweep” approach became quite common, viz.:

Dump and Sweep

Dump and Sweep

One of the most pervasive results of the “dump and sweep” methodology however is the amount of primary storage it uses. Due to it being much faster than tape, database administrators would often get significantly larger areas of storage – particularly as storage became cheaper – to conduct their dumps to. Instead of one or two days, it became increasingly common to have anywhere from 3-5 days of database dumps sitting on primary storage being swept up nightly by a filesystem backup agent.

Dump and sweep of course poses problems: in addition to needing large amounts of primary storage, the first backup for the database is on-platform – there’s no physical separation. That means the timing of getting the database backup completed before the filesystem sweep starts is critical. However, the timing for the dump is controlled by the DBA and dependent on the database load and the size of the database, whereas the timing of the filesystem backup is controlled by the backup administrator. This would see many environments spring up where over time the database grew to a size it wouldn’t get an off-platform backup for 24 hours – until the next filesystem backup happened. (E.g., a dump originally taking an hour to complete would be started at 19:00. The backup administrators would start the filesystem backup at 20:30, but over time the database backups would grow and wouldn’t complete until say, 21:00. Net result could be a partial or failed backup of the dump files the first night, with the second night being the first successful backup of the dump.)

Over time backup to disk entered popularity to overcome the overnight operational challenges of tape, then grew, and eventually the market has expanded to include deduplication storage, purpose built backup appliances and even when I’d normally consider to be integrated data protection appliances – ones where the intelligence (e.g., deduplication functionality) is extended out from the appliance to the individual systems being protected. That’s what we get, for instance, with Data Domain: the Boost functionality embedded in APIs on the client systems leveraging distributed segment processing to have everything being backed up participate in its own deduplication. The net result is one that scales better than the traditional 3-tier “client/server/{media server|storage node}” environment, because we’re scaling where it matters: out at the hosts being protected and up at protection storage, rather than adding a series of servers in the middle to manage bottlenecks. (I.e., we remove the bottlenecks.)

Even as large percentages of businesses switched to deduplicated storage – Data Domains mostly from a NetWorker perspective – and had the capability of leveraging distributed deduplication processes to speed up the backups, that legacy “dump and sweep” approach, if it had been in the business, often remained in the business.

We’re far enough into this now that I can revisit the two key schools of thought within data protection:

  • Backup administrators should schedule and control backups regardless of the application being backed up
  • Subject Matter Experts (SMEs) should have some control over their application backup process because they usually deeply understand how the business functions leveraging the application work

I’d suggest that the smaller the business, the more correct the first option is – or rather, when an environment is such that DBAs are contracted or outsourced in particular, having the backup administrator in charge of the backup process is probably more important to the business. But that creates a requirement for the backup administrator to know the ins and outs of backing up and recovering the application/database almost as deeply as a DBA themselves.

As businesses grow in size and as the number of mission critical systems sitting on top of databases/applications grow, there’s equally a strong opinion the second argument is correct: the SMEs need to be intimately involved in the backup and recovery process. Perhaps even more so, in a larger backup environment, you don’t want your backup administrators to actually be bottlenecks in a disaster situation (and they’d usually agree to this as well – it’s too stressful).

With centralised disk based protection storage – particularly deduplicating protection storage – we can actually get the best of both worlds now though. The backup administrators can be in control of the protection storage and set broad guidance on data protection at an architectural and policy level for much of the environment, but the DBAs can leverage that same protection storage and fold their backups into the overall requirements of their application. (This might be to even leverage third party job control systems to only trigger backups once batch jobs or data warehousing tasks have completed.)

Backup Process With Data Domain and Backup Server

Backup Process With Data Domain and Backup Server

That particular flow is great for businesses that have maintained centralised control over the backup process of databases and applications, but what about those where dump and sweep has been the design principle, and there’s a desire to keep a strong form of independence on the backup process, or where the overriding business goal is to absolutely limit the number of systems database administrators need to learn so they can focus on their job? They’re definitely legitimate approaches – particularly so in larger environments with more mission critical systems.

That’s why there’s the Data Domain Boost plugins for Applications and Databases – covering SAP, DB2, Oracle, SQL Server, etc. That gives a slightly different architecture, viz.:

DB Backups with Boost Plugin

DB Backups with Boost Plugin

In that model, the backup server (e.g., NetWorker) still controls and coordinates the majority of the backups in the environment, but the Boost Plugin for Databases/Applications is used on the database servers instead to allow complete integration between the DBA tools and the backup process.

So returning to the initial question – which way is right?

Well, that comes down to the real question: which way is right for your business? Pull any emotion or personal preferences out of the question and look at the real architectural requirements of the business, particularly relating to mission critical applications. Which way is the right way? Only your business can decide.

Here’s a thought I’ll leave you with though: there’s two critical components to being able to make the choice completely based on business requirements:

  • You need centralised protection storage where there aren’t the traditional (tape-inherited) limitations on concurrent device access
  • You need a data protection framework approach rather than a data protection monolith approach

The former allows you to make decisions without being impeded by arbitrary practical/physical limitations (e.g., “I can’t read from a tape and write to it at the same time”), and more importantly, the latter lets you build an adaptive data protection strategy using best of breed components at the different layers rather than squeezing everything into one box and making compromises at every step of the way. (NetWorker, as I’ve mentioned before, is a framework based backup product – but I’m talking more broadly here: framework based data protection environments.)

Happy choosing!