

TURBOCHARGED
EMC NETWORKER

v1.1 | April 2015
nsrd.info

http://nsrd.info

© Preston de Guise, 2015 1

http://nsrd.info

© Preston de Guise, 2015 2

About the author
Preston de Guise is an experienced data protection consultant who has
been working in the field for almost two decades with a focus throughout
most of that career in enterprise level data backup and recovery. He has
been using EMC (and formerly Legato) NetWorker for 19 years.

Preston is the author of Enterprise Systems Backup and Recovery: A Corporate
Insurance Policy, CRC Press (2008, ISBN-13 978-1420076394), and is
currently working on a new book, Data Protection: Preventing Data Loss in
the Age of Big Data, Cloud, and Virtualization.

Preston may be contacted via email to preston@nsrd.info.

About this manual
This manual is provided free of charge from the NetWorker Information Hub (http://nsrd.info).

You may use the manual as you wish, but you must not:

• Modify it;
• Claim any content within it as your own;
• Sell or exert a copyright claim over any script derived from scripts contained within the

manual or linked to from the manual;
• Redistribute it without permission from the author.

The instructions provided in this manual may, if used incorrectly or without consideration, cause
problems or data loss within your environment. No warranty is made whatsoever by the author as
to the applicability of commands and instructions for your environment, and the author is not
responsible or liable for any issues or data loss that may occur as a result of following the
instructions in this manual.

Document History
Version Released Description
1.1 April, 2015 Added mminfo reporting options for VBA backups.

Added ‘nsradmin -C’
Added information about dbgcommand.
Minor corrections.
Moved tables of figures and index of tables to end of document.

1.0 January, 2015 First release

Corrections or questions regarding this document can be directed to preston@nsrd.info.

http://nsrd.info

© Preston de Guise, 2015 3

http://nsrd.info

© Preston de Guise, 2015 4

Contents

INTRODUCTION 7

1 INTENDED AUDIENCE 7
2 HOW THIS GUIDE SHOULD BE USED 8
3 KEEP THE MAN PAGES HANDY 8
4 TYPES OF NETWORKER COMMANDS 8
5 CONVENTIONS USED 9
6 SCRIPTING EXAMPLES 9

REPORTING COMMANDS 10

7 INTRODUCTION 10
8 MMINFO 11
8.1 Ordering the Results 12
8.2 Specifying the Query 12
8.2.1 Specifying Multiple Queries 16
8.2.2 Many query options 17
8.3 Media Queries 19
8.4 Specifying the Report Columns 20
8.5 Enhancements for VBA Backups 25
8.6 XM your L 26
8.7 Stepping it up with a scripting language 29
8.7.1 Example: Script to determine order of media to scan 29
8.7.2 Example: mminfo2html 34
9 NSRINFO 36
9.1 Command Line Arguments 36
9.2 Listing files by time 37
9.3 Finding previously backed up files 38
10 GSTCLREPORT 41
11 MISCELLANEOUS REPORTING 47
11.1 nsr_render_log 47
11.1.1 Remote rendering 49
11.1.2 Aside – Auto-rendered Log Files 50
11.2 nsrsgrpcomp 52
11.3 Using nsrwatch 56

CONTROL COMMANDS 60

12 INTRODUCTION 60
13 NSRMM 61
13.1 What is nsrmm? 61
13.2 Warning 61

http://nsrd.info

© Preston de Guise, 2015 5

13.3 Lab Environment 61
13.4 Media manipulation 61
13.5 Media Database manipulation 65
13.6 Changing the mode of a volume or saveset 65
13.7 Changing Browse/Retention Time of a Saveset 68
14 TAPE LIBRARY OPERATIONS 69
14.1 nsrjb 69
14.1.1 Showing the jukebox contents 72
14.1.2 Jukebox Inventory 72
14.1.3 Resetting a Jukebox 76
14.1.4 Labelling and Relabeling Media 77
14.1.5 Loading and Unloading Volumes 79
14.1.6 Exporting and Importing Media 81
14.2 Low level interaction 83
14.2.1 sjisn 84
14.2.2 sjirdtag 85
14.2.3 sjimm 87
15 NSRADMIN 89
15.1 Warning 89
15.2 Getting Started 89
15.3 Offline vs Online 90
15.4 Your Lab Environment 91
15.5 Running nsradmin 91
15.6 Syntax Overview 92
15.7 Starting and Stopping Backups 99
15.7.1 What you’ll need 99
15.7.2 Monitoring 100
15.7.3 Starting a Backup 100
15.7.4 Stopping a Running Backup 101
15.8 Checking the Status of a Group 103
15.8.1 Cloning and Monitoring 104
15.9 Append vs Update 105
15.10 Setting up regular backup components 106
15.10.1 Browse and Retention Policies 107
15.10.2 Schedules 109
15.10.3 Groups 113
15.10.4 Clients 115
15.10.5 Pools 117
15.10.6 Revisiting the Groups 121
15.11 Monitoring Devices 122
15.12 Deleting Resources 124
15.13 Bulk Commands 128
15.14 Scripting 131
15.14.1 Introductory Scripting 132
15.14.2 Setting up for Scripted Client Creation 133

http://nsrd.info

© Preston de Guise, 2015 6

15.14.3 A client creation script 135
15.15 Connecting to Client Services 137
15.16 Using regular expressions in nsradmin 139
15.17 Offline mode 141

MAINTENANCE 143

16 INTRODUCTION 143
17 HEALTH CHECK COMMANDS 144
17.1 Media Database Check 144
17.2 Index Checks 145
17.3 Index Management 148
18 CLIENT CONNECTIVITY CHECKING 149
19 USING DBGCOMMAND 151
19.1 Correlating devices to running daemons 152
19.2 Flushing NetWorker’s Internal DNS Cache 154
19.3 Turning on Debug Mode 154
20 LOG MAINTENANCE 155

BACKUP CONTROL 157

21 INTRODUCTION 157
22 PRE AND POST PROCESSING COMMANDS 158
22.1 Advantages of pre and post processing 158
22.2 savepnpc 158
22.3 The new order 159
23 NETWORKER DIRECTIVES 163
23.1 Overview 163
23.2 Placement 165
23.3 Directive Examples 166
23.3.1 Scenario: Skipping Database files on Microsoft SQL Server 166
23.3.2 Example: Skipping Multimedia Content 167
23.3.3 Example: Split Backups of a very large filesystem 168

WRAPPING UP 172

FURTHER READING 173

INDICES 175

http://nsrd.info

© Preston de Guise, 2015 7

Introduction

1 Intended Audience
This guide is targeted at people who have been NetWorker administrators for at least 6-12 months.
Some of the concepts outlined within the manual define processes that, if used incorrectly, or used
against a production server without suitable modification, may cause issues.

As such, it’s recommended the reader be reasonably familiar with the process and operation of
EMC NetWorker before reading this guide.

The processes and instructions in this guide focus mostly on working with NetWorker from the
command line. In instances where there is an obvious advantage to working within a GUI, this may
be stated, but wherever possible, the command line process will be provided.

Remember, the most important thing about a command line interface is that it is fully
automatable. Automation is, by far and away, a key aspect of being a power-user for any product.

http://nsrd.info

© Preston de Guise, 2015 8

2 How this guide should be used
Some sections and examples used in this guide are expressly oriented towards running in a lab
environment, away from production systems. Almost all reporting examples within the guide will
be site-specific; i.e., the output or results received will be entirely dependent on the environment
they are run in. A report that may generate only a few lines in this guide, for instance, may generate
hundreds or even hundreds of thousands of lines of output on a production system.

Commands and instructions will be broken into two categories for the guide:

• Production-ready – able to be run immediately in a production environment, with the
exception of appropriate modifications for host names, passwords, local date formats, etc.

• Lab-only – a command that should only be run against a lab environment until you are
100% confident that you understand the results of the actions and you have appropriate
backups in place.

The author takes no responsibility for any scenario where a command executed as described
causes an issue; in all instances, an administrator is ultimately responsible for the commands and
actions he or she takes in a NetWorker environment.

3 Keep the man pages handy
On Unix/Linux systems at least, the NetWorker command line comes with extensive help via the
man pages. (E.g., “man mminfo”). If you’re using Windows, don’t despair – help comes in a slightly
different format. The PDF documentation for NetWorker includes a Command Reference Guide,
which is comprised of the individual man pages for all NetWorker CLI options.

The man pages should be your constant companion when working with NetWorker from the
command line, regardless of whether you access them via man on Unix/Linux, or whether you
have the Command Reference Guide PDF open at the same time as your command window.

4 Types of NetWorker Commands
There are three key categories of commands one might use in EMC NetWorker:

• Control – These include backup, recovery, configuration manipulation and data
processing.

• Maintenance – These are tasks that you should be periodically performing (or comfortable
performing) on your NetWorker server.

• Reporting – These provide access to the media database, file indices and NetWorker
Management Console database.

As you might gather, control functions are ones to be particularly mindful of when running within a
production environment. By and large, you should assume that all control functions described in
the guide are intended for use first against a lab environment for familiarisation, before being
adapted for use as required within a production environment.

Maintenance tasks are the basis for ensuring the NetWorker environment is running in peak
condition. These include various checks that you can run, and tasks that you should run before
performing upgrades or changes to the NetWorker environment. As per control functions, you
should make yourself comfortable running the commands within a lab environment first before
considering applying them, suitably adapted, to your own production environment.

http://nsrd.info

© Preston de Guise, 2015 9

Reporting typically should not cause a problem within a production environment, with the
obvious caveats that requesting too much data may cause a momentary spike in NetWorker or NMC
Server resources, and any system errors or corruption present within an environment can cause
any tool to behave erratically.

5 Conventions Used
Before any set of instructions that, if misapplied, could cause an issue, the following will be noted:

CAUTION – Lab Exercise

Be certain to check all instructions for this warning. If uncertain, always run a command in the lab
first.

The only exception to the above is where an entire topic covers information that, if misused, could
cause damage to your NetWorker environment. These topics will be prefaced with a Warning
section that should be followed carefully.

Commands that you enter will be presented in fixed-width font. Prompts will be shown in regular
weight text, and the actual commands you enter will be shown in bold. For example:

nsradmin> print type: NSR client

This implies the prompt was “nsradmin>” and the entered text was “print type: NSR client”.

6 Scripting Examples
The Perl programming language is used for most scripting examples in this guide, though some
smaller scripts will be presented in Windows batch format as well. If you’re not familiar with Perl,
don’t worry – the examples provided are self-contained and do not need modification to function
in a local environment.

Perl is installed by default on most Unix/Linux systems, and can be installed on Windows via third
party providers, such as ActiveState (www.activestate.com).

http://nsrd.info

© Preston de Guise, 2015 10

Reporting
Commands

7 Introduction
Within the reporting commands, there’s an obvious gorilla in the room – mminfo. Yet, this is not
whole story when it comes to NetWorker reporting.

In this chapter, we’ll focus on the three essential reporting tools available to a NetWorker
administrator:

• mminfo – Interrogates the media database
• nsrinfo – Interrogates client indices
• gstclreport – Provides access to NMC reporting

Additionally, we’ll look at:

• nsr_render_log – Provides a human readable version of a ‘.raw’ log file
• nsrsgrpcomp – Accesses and displays recent savegroup completion information

http://nsrd.info

© Preston de Guise, 2015 11

In particular, it’s worth noting that many of the reporting capabilities in NetWorker are best
experimented with regularly. As you use them more often, and try additional options, you’ll
discover new ways of getting helpful information out of the product.

8 mminfo
To quote the NetWorker man/help page for mminfo, this utility is the “NetWorker media database
reporting command”. It should be an essential feature in any NetWorker administrator’s toolkit.

Let’s start with the basics. Run without any arguments, mminfo reports all successfully completed
backups performed in the last 24 hours:

mminfo

Figure 1: mminfo default output (24 hours backups)

If you’re not familiar with mminfo’s output conventions, the sort order may need explaining. The
default sort order is:

• media
• offset on media
• client
• name
• time
• length of this part of the saveset

This output format is highly suitable for tape based backups, but less so for modern backup targets
such as Data Domain and Advanced File Type devices.

http://nsrd.info

© Preston de Guise, 2015 12

8.1 Ordering the Results
The sort order for mminfo output can be changed by using the ‘-o’ parameter. This parameter
takes the following options:

Option Meaning
c Client
e Expiration date
l Length
m Media name
n Name of the client
o Offset of the backup from the start of the media
t Timestamp for the saveset
R Reverse the output ordering
Table 1: Ordering options in mminfo

For example, to order mminfo output by client, saveset name and then time, one would use ‘-ocnt’:

mminfo -ocnt

Figure 2: Specifying an alternate order output for mminfo

You may note that this is giving substantially more/different output from the previous command.
As stated, when run without any arguments, mminfo will report all successfully completed backups
generated in the last 24 hours.

However, even specifying the order of the output triggers mminfo to behave differently – and that’s
to provide information on all backups.

8.2 Specifying the Query
To start, let’s return the previous query to the default query – everything backed up in the last 24
hours:

mminfo -q "savetime>=24 hours ago" -ocnt

http://nsrd.info

© Preston de Guise, 2015 13

Figure 3: Using a query and sort order

The specific query to run is specified in the mminfo command by using the argument -q, followed
by a series of either flag1 or value proposition arguments. In this case, we’ve used the argument:

savetime>=24 hours ago

This introduces the first of the eccentricities of mminfo. Whenever you use greater than or less
than signs in an mminfo command, you should understand that they mean the following:

• Greater than (>) = “More recent than”
• Less than (<) = “Older than”

Another way of considering the process is that mminfo converts all time-based arguments to the
number of seconds since a January 1, 1970 (GMT). Hence, “savetime>=24 hours ago” means “where
the time of the saveset in seconds since January 1, 1970 is greater than the time of 24 hours ago in
seconds since January 1, 1970”.

The following table provides details of query options in NetWorker’s mminfo utility:

Attribute Type Description
%used ‘full’ or number The percentage of the estimated capacity of the volume

that has been used. (E.g., “%used>50”).
annotation String Annotation (description) for an archive saveset.
backup_size Number Size of a VBA saveset on either internal VBA storage or a

NetWorker device2.
capacity String Estimated capacity of the volume (e.g., “400GB”).
checkpoint_id String For checkpoint savesets, the ID of the checkpoint.
checkpoint_seq String For checkpoint savesets, the sequence of the saveset.

1 It is best to avoid thinking of the flag options as Boolean options, since mminfo does not handle flag
negation as the average user would expect.
2 Note that NetWorker currently does not limit this field to use for VBA backups only.

http://nsrd.info

© Preston de Guise, 2015 14

Attribute Type Description
checkpoint-
restart

Flag Matches savesets with the ‘checkpoint restart’ enabled
option.

client String Name of the client associated with the backup.
clientid String Client identifier (unique) associated with the backup3.
cloneid Number The unique identifier of a saveset clone.
clonetime Time Date/timestamp that a saveset clone was generated.
clretent Time The date/timestamp that a saveset clone will expire.
continued Flag Matches savesets that have continued on to or from

another volume.
copies Number Number of clones of the saveset (this includes the original

backup as well, if still present).
cover Flag Matches ‘cover’ savesets.
dsa Flag Matches NDMP savesets that have been transferred across

to a NetWorker server or storage node and saved to a
standard volume.

family String The type of media family (e.g., ‘disk’, ‘tape’).
first Number Offset to the first byte of the saveset within a section. (For

multiplexed backups.)
full Flag Matches full volumes.
group String The group the saveset was generated out of. (Blank if it was

a manual backup.)
incomplete Flag Matches savesets that did not complete.
inuse Flag Matches volumes that are currently in use.
labeled Time Date/timestamp that the volume was most recently

labelled. (Note the spelling of this option.)
last Number Offset of the last byte of the saveset within a section.
level String Any valid NetWorker level string. This will be one of:

• 0 through to 9
• full (or ‘f’), incr (or ‘i’), migration (or ‘m’).

location String Location of the volume.
manual Flag Matches volumes that are manually recyclable.
mediafile Number For tape-based backups, the file number (measured in

EOFs written to tape) where the saveset starts. Always 0
for disk based backups.

mediarec Number For tape-based backups, the media record number
(internal to a single media file) within a block of data
where the saveset instance starts. Always 0 for disk based
backups.

mounts Number Number of times the label of the volume is read – does not
necessarily have a 1:1 correlation with the number of times
the volume is mounted into a device.

name String Name of a save set.
ndmp Flag Matches NDMP savesets performed directly by NDMP

hosts.
near Flag Matches volumes that are flagged in the media database as

‘nearline’.
next Number Next media file that will be written.
nfiles Number Number of client files in the saveset. This is particularly

useful for filesystem based backups.
nrec Number Next media record that will be written.

3 It is more correct to say that savesets are tagged as belonging to a particular client ID rather than a
particular client. The client ID is mapped by the media database to specific client names; this allows the user
to rename a client but keep existing backups for that client.

http://nsrd.info

© Preston de Guise, 2015 15

Attribute Type Description
olabel Time Date/timestamp that the volume was first (originally)

labelled.
pool String Pool name.
pssid Number/String Saveset ID (short or long format, as per ‘ssid’) of the first

saveset in a saveset series4.
raw Flag Matches raw savesets. (An attribute reserved for particular

modules.)
read Number Number of KB read from the volume.
readonly Flag Matches volumes that are read-only.
recoverable Flag Matches savesets whose browse time has expired but have

not yet expired.
recycled Number Number of times the volume has been recycled.
rehydrated Flag Matches those savesets that have been rehydrated from

Avamar deduplicated savesets.
rolledin Flag Matches savesets that have the ‘rolled-in’ flag.
savesets Number Number of savesets (or partial ones thereof) on a volume.
savetime Time Date/timestamp of the backup (from the client clock).
scan Flag Matches volumes that have been flagged as requiring

scanning.
smartmedia Flag Matches volumes that are flagged in the media database as

belonging to ‘SmartMedia’5.
snap Flag Matches backups flagged as snapshots.
ssaccess Time Date/timestamp of when the saveset was last accessed for

backup or recovery purposes.
ssbrowse Time Date/timestamp that the browse period for the saveset will

expire.
ssbundle String A save set bundle identifier; this is used in certain

instances where multiple savesets are staged out together.
sscomp Time Date/timestamp of when the saveset was completed.
sscreate Time Date/timestamp of the backup (from the server clock).
ssid Number/String Can be specified either as a number up to 10 characters

long, or a long form format (53 characters long).
ssinsert Time Date/timestamp that the saveset was most recently added

to the media database. This is typically either going to be
the saveset creation time (via a backup) or when it was
scanned in.

ssrecycle Flag Matches savesets that are recyclable (browse and retention
have expired).

ssretent Time Date/timestamp that the retention time for the saveset will
expire.

suspect Flag Whether or not NetWorker has flagged the saveset as
suspect.

synthetic_full Flag Matches those savesets that are full, and tagged as
synthetic full backups.

totalsize Number Total size of the saveset, in bytes.
type String Media type (e..g, adv_file, “LTO Ultrium-4”).
valid Flag Matches valid savesets. (Note that all savesets are currently

marked as valid by existing NetWorker servers.)
validcopies Number Number of successful copies of a saveset.
vmname String Virtual machine name that a save set belongs to.

4 The pssid option was typically associated with the NetWorker media database when savesets had to be split
on 2000MB boundaries.
5 It is unlikely that any existing NetWorker server would still make use of the SmartMedia flag.

http://nsrd.info

© Preston de Guise, 2015 16

Attribute Type Description
volaccess Time Date/timestamp the volume was last access, regardless of

whether it was for reading, writing.
volid String Unique volume identifier number.
volrecycle Flag Matches volumes that are currently recyclable.
volretent Time Matches the longest retention time for any saveset on the

volume.
volume String The volume name.
written String Amount of data written to the volume, in KB.

Note that there are quick-use arguments for mminfo:

• -c client – Retrieve entries for named client only
• -N name – Retrieve entries for named saveset only
• -t time – Retrieve entries for the time specified.

In each instance, these can be used instead of the query specification option listed in the table
above. For example, the following two mminfo commands will achieve the same results:

mminfo -q "client=archon"
mminfo -c archon

There is no correct method above, but this guide will focus solely on the former.

8.2.1 Specifying Multiple Queries
Multiple query options in mminfo are separated by a comma. The same query argument can be
used multiple times, for example, consider the query:

mminfo -q "client=archon,client=skaro,savetime>=24 hours
ago"

Figure 4: Querying on multiple clients

In this scenario, the query is:

Retrieve all backups for (the client archon or the client skaro) generated in the last 24 hours.

Consider a slightly different query, more focused on time:

http://nsrd.info

© Preston de Guise, 2015 17

mminfo -q "client=archon,savetime>=3 weeks ago,savetime<=2
weeks ago"

This yields:

Figure 5: Query based on a date range

In this scenario, the query is:

Retrieve all backups for the client archon generated between (3 and 2 weeks ago).

Consider the difference between this query and the previous query. In the previous query, using
the same field twice resulted in an ‘or’ operation – all backups for the client archon or the client
skaro. In this query, using the same field resulted in an ‘and’ operation – all backups that are more
recent than 3 weeks ago and less recent than 2 weeks ago.

This is perhaps one of the areas where beginners in mminfo get most confused, and it’s important
to understand that mminfo queries are not some form of SQL. Since the arguments and flags that
might be queried on are limited to a specific function, mminfo will intelligently interpret the
arguments provided. So:

• client=archon,client=skaro logically can only mean one thing – where the client is ‘archon’ or
the client is ‘skaro’.

• saevetime>=3 weeks ago,savetime<=2 weeks ago can also logically only mean one thing –
 where the backup time occurred within the last 3 weeks, and where the backup time
occurred no recently than 2 weeks ago.

In both cases, the query with an alternate logical operand would make no sense. After all, a saveset
can never be one that belongs to both the client archon and the client skaro6. Equally, if the savetime
query were based on or rather than and, it would return all savesets – the first would match every
saveset done in the last three weeks, and the second would match every saveset done more than 2
weeks ago.

8.2.2 Many query options
It’s entirely normal to use mminfo to narrow down the selection to a highly specific type of saveset.
For instance, consider the scenario where you wanted to find all full backups of the special saveset
‘WINDOWS ROLES AND FEATURES:\’ for the client skaro performed between 2 and 4 weeks
ago. This would resemble the following:

6 The saveset instance. The same saveset name can be shared between two clients, but this is no different from
knowing two different people called Isobel.

http://nsrd.info

© Preston de Guise, 2015 18

mminfo -q 'client=skaro,savetime>=4 weeks ago,savetime<=2
weeks ago,level=full,name=WINDOWS ROLES AND FEATURES:\'

Figure 6: Narrowing down a query

While mminfo is almost entirely platform neutral in its query construction, the use of backslash in
Windows saveset names is an exception. The above query, using single quotes instead of double
quotes, is a Unix-only query.

An alternate query that will work on both Windows and Unix systems would be:

mminfo -q "client=skaro,savetime>=4 weeks ago,savetime<=2
weeks ago,level=full,name=WINDOWS ROLES AND FEATURES:\\"

In this scenario, we’re ‘escaping’ the backslash in the Windows saveset with a double-backslash.
This query works on both platforms – for instance:

Figure 7: mminfo query run from Windows

In this instance, the query isn’t being run from the NetWorker server itself – instead, it’s being run
from the client skaro; as such, mminfo must be supplied with another argument – the server name
(“-s orilla”).

In case you’re wondering, running the query with single quotes on Windows will result in a
somewhat odd result:

http://nsrd.info

© Preston de Guise, 2015 19

Figure 8: Example of mminfo queries using single quotes on Windows

This leads us to some important rules to follow when scripting mminfo queries so that they may be
reliably run on both Windows and Unix/Linux platform as required:

1. Always enclose the query parameters in double quotes, not single quotes.
2. Use the ‘\\’ convention of escaping a backslash for Windows paths.

8.3 Media Queries
So far we’ve concentrated on saveset queries – where the focus of the output has been on individual
backups. The mminfo utility however has an alternate mode that focuses on media details –
 volumes.

The base media report is accessed via ‘mminfo -m’, and the output resembles the following:

Figure 9: mminfo -m output (disk volumes)

The above output is for a server running only with disk backup devices. Tape based systems will
obviously present more volumes:

http://nsrd.info

© Preston de Guise, 2015 20

Figure 10: mminfo -m output (tape volumes)

Additionally, the media report offers a verbose mode that outputs three additional fields – the
volume ID, the next file marker, and the volume type. (The file marker is not referenced in disk
backup devices such as adv_file and Data Domain Boost. It refers to tapes – physical or virtual.)
Output from the verbose media report resembles the following:

Figure 11: mminfo -mv (verbose media report) output

8.4 Specifying the Report Columns
Once we’ve sorted out how to assemble mminfo queries, the next step is to select the output that
we want to see – this is achieved via the report (-r) argument.

To start with, consider the scenario where all we want to see is the name, size, date and level of
every backup done for the client ‘mondas’ in the last two weeks, ordered by time, with the most
recent backups first. The query for this would resemble the following:

mminfo -q "client=mondas,savetime>=2 weeks ago" -r
savetime,name,sumsize,level -ot

http://nsrd.info

© Preston de Guise, 2015 21

Figure 12: Specifying report columns in mminfo

The report argument allows us to not only specify the columns that we wish to see, but also the
width of the columns. For instance, the savetime output is actually a date/timestamp, but the default
output width results in only showing the date. If we wanted to see the time as well, we could run
the command:

mminfo -q "client=mondas,savetime>=2 weeks ago" -r
"savetime(18),name,sumsize,level" -ot

With the revised command in place, the output will resemble the following:

Figure 13: Specifying column width in report output

The width option can be used to change several ‘conventional’ details. For instance:

• Using a width of 10 or more against a size field that normally outputs in ‘X yB’ (e.g., “2088
MB”) will result in the size field being output in bytes;

• Using a width of 53 or more against the saveset ID yields the long form saveset ID, which
can in turn be matched against specific files on advanced file type devices.

For example, consider the following query:

mminfo -q "savetime>=24 hours ago" -r "name,ssid,ssid(53)"

The output from this command might resemble the following:

http://nsrd.info

© Preston de Guise, 2015 22

Figure 14: Getting the long-form saveset ID

To demonstrate the use of the long-form saveset ID to associate with an actual file, the command
above was run on a server with adv_file devices. When a correlating ‘find’ command was run
against the disk backup filesystem, the file containing the saveset was found:

Figure 15: Finding files on adv_file devices based on the long-form saveset ID

A large number of the potential report options have already been listed in Table 1 for the query
options, with the key consideration that query flag options are not valid as report options.

Additional report options are outlined in the table below:

Attribute Description
attrs Extended saveset attributes. This provides additional information about

savesets.
avail Volume availability – i.e., where the volume is. For the time being, this is

limited to:
• n – Nearline (within a jukebox)
• ov – SmartMedia7 managed volume

clflags Clone flags for this specific saveset clone instance. Can be:
• a – Aborted
• i – Incomplete
• s – Suspect
• E – Eligible for recycling

fragflags Saveset fragment summary flags, in the same format as ‘sumflags’.
fragsize The calculated size of a saveset fragment. If specified without width, this will

output in conventional format – e.g., “2975 MB”. If a width of 10 or larger is
specified, it will output in bytes.

last Offset of the last byte of the saveset in the current fragment.

7 Given SmartMedia has been end-of-life for some time, it is likely the only flag that will be observed here is
‘n’ for nearline media.

http://nsrd.info

© Preston de Guise, 2015 23

Attribute Description
newline Force a newline into the output. Use “newline(n)” to generate a particular

number of carriage returns into the output.
nsavetime Save time, expressed as the number of seconds since January 1, 1970 (GMT).
savesets Number of savesets on a volume.
space Space column. Use “space(n)” to generate a particular number of spaces.
ssflags Standard saveset flags. This will include one or more of the following

(depending on the state or type of the saveset):
• C – A continued saveset
• v – A valid saveset
• r – A recoverable saveset (“purged”)
• E – A saveset that is eligible for recycling
• N – An NDMP generated saveset
• i – An incomplete saveset
• R – A raw saveset
• P – A snapshot saveset
• K – A cover saveset
• I – An in-progress saveset
• F – A finished saveset
• k – A checkpoint-restart enabled saveset

state Volume state information (blank if none set):
• E – eligible for recycling
• M – a volume flagged for manual recycling
• X – a volume flagged for manual recycling that is eligible to be

recycled
• A – an archive or migration volume

sumflags Volume saveset summary flags. This consists of two types of summary
information – the part of the saveset on the volume and the saveset status.
For the part of the saveset on the volume:

• c – The complete saveset is on this volume
• h – The head (start) of the saveset is on this volume
• m – A middle part of the saveset is on this volume
• t – The tail (end) of the saveset is on this volume

For the saveset status:
• b – The saveset is browseable (i.e., still in client indices)
• r – The saveset is recoverable (i.e., not in client indices)
• a – The saveset was aborted
• i – The saveset is currently in-progress

sumsize Size of all the sections of the saveset on this volume. If specified without
width, this will output in conventional format – e.g., “2975 MB”. If a width of
10 or larger is specified, it will output in bytes.

volattrs Extended volume attributes.
volflags Potential volume flags (blank if none set):

• d – dirty (volume is currently in use for writing)
• r – read only
• S – scan needed

Table 2: Additional report fields

Just with query parameters, the report specification for an mminfo command can become quite
complex. For instance, the default output fields are:

-r volume,client,savetime,sumsize,level,name

http://nsrd.info

© Preston de Guise, 2015 24

The report fields that you might choose to use will be largely governed by the information that
you’re looking for. For instance, to print a list of all saveset IDs generated since yesterday,
including their full date/timestamp for savetime, browse expiration date and retention expiration
date, you would use the command:

mminfo -q "savetime>=yesterday" -r
"ssid,savetime(20),ssbrowse(20),ssretent(20)"

This would yield output resembling the following:

Figure 16: Using multiple width fields in a custom report

As you would expect, the report options can equally be used to determine information about
volume usage. For example, consider a scenario where you want to report on the following for each
volume:

• The volume type
• The volume name
• When the volume was first labelled
• When the volume was most recently labelled
• How many times the volume has been recycled

This information might be generated periodically for physical tapes in order to enact an aging
policy.

The command used would resemble the following:

mminfo -q "olabel>10 years ago" -r
type,volume,olabel,labeled,recycled

Note that the query used here is relatively arbitrary. By default, even if the fields being output are
based on volume information, NetWorker will not output details for empty volumes. As such, we
force their inclusion by specifying a volume based query based on a timeframe we know will
include all volumes. In this case, ‘olabel>10 years ago’ will select all volumes that were originally
labelled in the last 10 years – for a temporary lab server, this is more than sufficient. Based on your
environment, the command may need to be varied a little.

http://nsrd.info

© Preston de Guise, 2015 25

Figure 17: Producing a volume aging report

8.5 Enhancements for VBA Backups
NetWorker’s new VBA approach to VMware backups has proven extremely popular in a relatively
short period of time, but it does introduce some changes for reporting in mminfo. In particular, the
default reporting for saveset names for VBA backups doesn’t include the sort of information that
allows the virtual machine to be relatively identified.

For instance:

Figure 18: mminfo output featuring VBA virtual machine backups

As can be seen by the above screenshot, a saveset name of vm:<vm_id>:vcenterName isn’t the best
readable format for determining what virtual machines have been backed up, and the other
pertinent details of those backups. This can however be resolved with two options in mminfo.

The first option is to generate a VBA specific backup report, via the option -k. In the most basic
format, this output resembles the following:

http://nsrd.info

© Preston de Guise, 2015 26

Figure 19: mminfo's new VBA specific report output

The alternate is to reference specific mminfo report fields designed for VBA backups:

• vmname – The actual name of the virtual machine
• backup_size – The size of the virtual machine backup8

For instance, if we wanted to see the virtual machine backups written to the Squeeze pool in the last
24 hours, a command such as the following could be used:

mminfo -q "pool=Squeeze,savetime>=24 hours ago" -r
volume,vmname,sumsize,backup_size,level

Output for this might resemble the following:

Figure 20: Reporting using the 'vmname' and 'backup_size' options

Note that if you generate a query that includes both regular backups and VBA backups, the
vmname and backup_size output options will be blank for conventional backups.

8.6 XM your L
The volume usage output is useful, but in the default output format of mminfo, it doesn’t
necessarily lend itself to automated report collation where the results are to be easily parsed. This
leads us to mminfo’s output format options. This can be in one of two variants:

• -xml – XML or
• -xcS – Arbitrary field separation by the string denoted by S.

By rights, the -xcS format is intended for use with a single character, but there’s no real limit on the
number of characters used. For instance, the following is a valid command:

8 This will only differ from the conventional size settings when the virtual machine has been backed up to
the internal data store on the VBA.

http://nsrd.info

© Preston de Guise, 2015 27

mminfo -q "olabel>10 years ago" -r
type,volume,olabel,labeled,recycled –xc" gibber jabber "

Figure 21: Arbitrary field separation in mminfo reports

Unless you’re an absolute die-hard fan of certain comedic legal television shows based in Boston,
it’s unlikely you’d want to fill your reports with gibber jabber, so a more likely field separator
would be the comma:

mminfo -q "olabel>10 years ago" -r
type,volume,olabel,labeled,recycled –xc,

Figure 22: Producing comma-separated output from mminfo

Comma separated output is often sufficient for mminfo output in order to import the results into
spreadsheets. However, comma separated output by itself may not render output that can be
reliably interpreted (e.g., it is conceivable for a variety of fields such as the saveset name and group
name to include a comma).

The most reliable way of producing machine results that may be parsed by software is by
producing output in XML format, which resembles the following:

http://nsrd.info

© Preston de Guise, 2015 28

Figure 23: XML mminfo output

You might note from the above output that there are not yet any actual report details included.
Being XML, the output includes all the metadata required to parse the report. The actual report
itself follows the metadata, and will resemble the following:

http://nsrd.info

© Preston de Guise, 2015 29

Figure 24: Actual XML data content in mminfo XML output

We will cover an example of processing mminfo XML output in the scripting section that follows.

8.7 Stepping it up with a scripting language

8.7.1 Example: Script to determine order of media to scan
NetWorker does not, in itself, contain a scripting language as such. That being said, the CLI is
robust and readily accessible with any reasonable scripting language, and the output of mminfo
feeds into many scripts around the world.

For one example of scripting, consider the mminfo -V command. This gives verbose details about
savesets, and is particularly useful in tape or virtual tape environments where savesets span
multiple volumes. For instance:

http://nsrd.info

© Preston de Guise, 2015 30

Figure 25: Very verbose mminfo output

When a saveset that is no longer browseable needs to be scanned back in, it is typically
recommended to rescan it in the correct volume order, from start to finish. If a saveset only exists
on one volume, that’s simple. If it exists on two or even three, then the fragflags can be used to
identify the head, tail and middle segment of the saveset.

You should read the man page/help documentation for the full detail of mminfo’s -V option;
however, each section of output is broken into to three lines, with the first field on the first line
being the volume name, and the last field on the third line being the saveset fragment flags
(fragflags).

The first two entries on the third line contain the information critical for determining the order in
which a saveset should be scanned in – these are the offsets of the first and last bytes of the saveset
contained within this fragment of the saveset.

As per the example above, if a saveset spans a larger number of volumes, the output order of
mminfo -V may not in fact be the order in which the saveset was generated. To correctly determine
this, it’s necessary to run a more conventional mminfo command and assemble the order based on
the starting and ending position of each fragment within the total saveset size.

In order to correctly interpret the order in which a saveset should be (re)scanned in, the volumes
need to be aligned based on the first and last offset bytes of each saveset fragment reported.

The command mminfo -V does not lend itself well to scripting. However, we only require a few
specific details, and these can be determined using the report options volume, first, and last. A
complete Perl script (named ‘volume-order.pl’) to determine the order is set out below:

#!/usr/bin/perl -w

Modules

http://nsrd.info

© Preston de Guise, 2015 31

use strict;
use Getopt::Std;
use File::Basename;
use Math::BigInt lib => 'Calc';

Global variables

my %opts = ();
my $self = basename($0);
my $ssid = -1;
my $pool = "(undef)";
my %fragments = ();
my $verbose = 0;

Functions

sub usage {
 print <<EOF;
$self [-h] -S ssid [-b pool] [-v]

Where:

 -h Print this help and exit.
 -S ssid Print information for saveset denoted by
ssid.
 -b pool Restrict search to nominated pool.
 -v Enable verbose mode.

For use with savesets that span multiple tapes, this command
prints out the order in which savesets appear on the tape(s)
for correct rescanning.
EOF

 if (@_+0 != 0) {
 my @messages = @_;
 foreach my $line (@messages) {
 my $tmp = $line;
 chomp $tmp;
 print "$tmp\n";
 }
 }
 die "\n";
}

Main

if (getopts('hS:b:v',\%opts)) {
 usage() if (defined($opts{h}));

 if (defined($opts{S}) && $opts{S} =~ /^\d+$/) {
 $ssid = $opts{S};
 } else {
 usage("Saveset ID must be positive integer.\n");
 }

http://nsrd.info

© Preston de Guise, 2015 32

 if (defined($opts{v})) {
 $verbose = 1;
 }

 if (defined($opts{b})) {
 $pool = $opts{b};
 }
}

Assemble mminfo query.
my $query = "mminfo -q \"ssid=$ssid";
if ($pool ne "(undef)") {
 $query .= ",pool=$pool\"";
} else {
 $query .= "\"";
}

$query .= " -r volume,first,last -xc,";
($verbose) && print "Query: $query\n\n";

if (open(MMI,"$query 2>&1 |")) {
 <MMI>;
 while (<MMI>) {
 my $tmp = $_;
 chomp $tmp;
 my @entries = split(/,/,$tmp);
 my $volume = $entries[0];
 my $first = Math::BigInt->new($entries[1]);
 my $last = Math::BigInt->new($entries[2]);

 $fragments{$first}{volume} = $volume;
 $fragments{$first}{end} = $last;

 }
 close(MMI);
} else {
 die "Could not execute: $query\n";
}

my @volumes = ();
my $volCount = 0;
foreach my $fragment (sort {$a <=> $b} keys %fragments) {
 ($verbose) && print "$fragment:
$fragments{$fragment}{volume} ->
$fragments{$fragment}{end}\n";
 push(@volumes,$fragments{$fragment}{volume});
 $volCount++;
}

my $volString = "$volCount volume";
$volString .= "s" if ($volCount > 1);

print "\n$volString to be scanned in the following order:\n"
. join(", ",@volumes) . "\n";

You can also download the following script from the following URL:

http://nsrd.info/utils/volume-order.zip

The logic for this script is as follows:

http://nsrd.info

© Preston de Guise, 2015 33

• Get from the user the saveset ID to provide scanning order for (and optionally the pool it is
written in – for use when there are multiple copies)9;

• Run an mminfo query to determine the start/finish offset bytes for saveset fragments across
all volumes;

• Output a list of volumes, ordered by the start and finish offset bytes.

Optionally, if verbose mode is enabled, the query run is shown, as is the construction of the
ordering data.

Note that this script requires the use of the Perl Math module to avoid any risk of overflow on
numbers, given all values output by mminfo are in bytes.

Output from this script can resemble the following:

Figure 26: Sample volume-order output

When run in verbose mode, the output starts with the assembly of the ordering information:

Figure 27: Sample volume-order verbose output

9 Differentiating between multiple copies within the same pool is left as an exercise for the reader.

http://nsrd.info

© Preston de Guise, 2015 34

8.7.2 Example: mminfo2html
The XML output from mminfo is quite useful, but doesn’t lend itself for immediate interpretation
and display. While a browser will open the file, for instance, without additional style information,
it won’t necessarily display it in a tabular format.

One way around this is to push the XML output into a simple Perl script that re-interprets it to
HTML. In the simplest form, such a script might take the output from mminfo as standard input,
and write the HTML to standard output. Thus, invoking such a command might resemble the
following:

mminfo -q querySpec -r reportSpec -xml | mminfo2html.pl >
file.html

Where:

• querySpec is the mminfo query specification
• reportSpec is the mminfo report specification
• file.html is the destination file to write to

For instance:

Figure 28: Sample execution of custom Perl script, 'mminfo2html'

The HTML file rendered might look like the following in the browser:

Figure 29: Sample output from mminfo2html

The actual Perl script used to render this (named as mminfo2html.pl) is as follows:

#!/usr/bin/perl -w

use strict;

my @order = ();
my %entries = ();

http://nsrd.info

© Preston de Guise, 2015 35

my $count = 0;
my $reportStarted = 0;
my $haveOrder = 0;
while (<>) {
 my $line = $_;
 chomp $line;

 if ($line =~ /mminfo-tabular-report/) {
 $reportStarted = 1;
 next;
 }

 next if (!$reportStarted);

 if ($line =~ /^<result>/) {
 # Start of a result entry.
 my $nextLine = "";
 while ($nextLine ne "</result>") {
 my $nextLine = <>;
 chomp $nextLine;
 if ($nextLine =~ "</result>") {
 $haveOrder = 1;
 $count++;
 last;
 }
 if ($nextLine =~ /^<(.*)>(.*)<\/.*>$/) {
 my $field = $1;
 my $data = $2;
 $entries{$count}{$field} = $data;
 if (!$haveOrder) {
 push(@order,$field);
 }
 }
 }
 }
}

print <<EOF;
<HTML>
 <HEAD>
 <TITLE>mminfo2html Output</TITLE>
 </HEAD>

<BODY>
<H1>mminfo2html Output</H1>
<TABLE WIDTH=100% BORDER=1>
 <TR>
EOF

foreach my $field (@order) {
 print "\t\t<TH>" . ucfirst($field) . "</TH>\n"
}
print "\t</TR>\n";

foreach my $entry (sort {$a cmp $b} keys %entries) {
 print "\t<TR>\n";
 foreach my $field (@order) {
 print "\t<TD>" . $entries{$entry}{$field} .
"</TD>\n";
 }
 print "\t</TR>\n";
}
print <<EOF;

http://nsrd.info

© Preston de Guise, 2015 36

</TABLE>
</BODY>
</HTML>
EOF

A more comprehensive version of the mminfo2html.pl script is available from the website at
http://nsrd.info/utils/mminfo2html.zip. The version on the website includes such features as
options to name the report, a default form of CSS for better display, and options to include a
custom CSS file.

9 nsrinfo
The ‘nsrinfo’ command is not as frequently used as mminfo, yet still performs a powerful function:
it allows you to query and view the content of browseable file indices.

The simplest form of nsrinfo is to provide a client name and the nsavetime of a specific backup in
order to list the files that were backed up. Consider, for instance, the following sequence of
commands:

Figure 30: nsrinfo, a first look

This sequence worked as follows:

• The first mminfo command allowed us determine the saveset we were interested in;
• The second mminfo command extracted the nsavetime value for that particular saveset;
• The nsrinfo command then extracted the list of files in the client index for the nominated

client against the specific nsavetime extracted from the previous mminfo command.

9.1 Command Line Arguments
The nsrinfo command accepts the following arguments:

http://nsrd.info

© Preston de Guise, 2015 37

• -v – Verbose: Includes file type, savetime, etc.
• -V – Alternate verbose: Includes offset in the saveset to the file, size within the saveset,

namespace of application that generated the saveset, and so on.
• -s server – Run nsrinfo against the nominated server.
• -L – Run nsrinfo against the index files (useful if the server is shutdown).
• -n – Query against a specific namespace. Valid namespaces are:

o all – All backup types
o bbb – Block based backup data
o migrated – NetWorker migrated savesets
o archive – NetWorker archive savesets
o db2 – IBM DB/2 backups
o informix – Informix database backups
o msexch – Microsoft Exchange Data
o mssql – Microsoft SQL Server Data
o oracle – Oracle database backups
o notes – Lotus Notes backups
o saphana – SAP HANA backups
o sybase – Sybase backups

• -N filename – Specify an exact filename to search the index for.
• -t time – Search for backups performed at an exact time.
• -T – Give filenames backed up but excludes ‘continuation’ directories.
• -X application – Restricts data to a specific application type, which can be one of all, Informix

or none.
• -x exportSpec – Uses a specific export specification, in the same format for mminfo; i.e., -xml

for XML output, -xc, for comma separated output, etc.

9.2 Listing files by time
The nsrinfo command we used earlier was:

nsrinfo -t 1406026959 mondas

The reason the nsavetime value is often used with nsrinfo is the simple reason that it is the most
exact way of specifying the actual time of the backup executed that is to be queried. If nsavetime
isn’t used, the time specified to nsrinfo must be accurate to the second in order to have nsrinfo
correctly target a saveset.

For instance, at the start of the output to the above command, nsrinfo states:

Figure 31: Isolating saveset times in nsrinfo (1)

http://nsrd.info

© Preston de Guise, 2015 38

As the -t option for nsrinfo accepts any time format that is recognised by NetWorker, we could run
the command, replacing the nsavetime with the human readable time expressed in brackets in the
output of the command:

Figure 32: Isolating saveset times in nsrinfo (2)

However, re-running the command and dropping the seconds from the time, or even altering them
by one second in either direction yields a failure every time:

Figure 33: Isolating saveset times in nsrinfo (3)

For this reason, since the exact time must be extracted, it is usually more convenient to provide this
time in nsavetime format to nsrinfo.

9.3 Finding previously backed up files
Another aspect of nsrinfo is its capability, if provided with the exact path to a filename, of quickly
providing a list of backup versions of that file. This same functionality is more familiar to users
within the recovery interface, such as:

http://nsrd.info

© Preston de Guise, 2015 39

Figure 34: Identifying backup versions via recover

Via nsrinfo, the process is as follows:

nsrinfo –N /path/to/file clientName

Figure 35: Identifying backup versions via nsrinfo

The key difference between the output of nsrinfo and the output of recover in this scenario is that
recover also sifts information from the media database to elaborate on volume details for the file.

Using the verbose options for nsrinfo in this type of query can provide additional information
about a file backed up, in much the same way as recover does:

nsrinfo -N /path/to/file clientName -vV

For instance:

Figure 36: Using nsrinfo with the verbose flags

You can, if you wish, do simple backup file finding using nsrinfo. One such mechanism is to make
use of the option to scan all indices for a client by not specifying a time at all:

nsrinfo clientName

The output in this scenario will resemble the following:

http://nsrd.info

© Preston de Guise, 2015 40

Figure 37: Using nsrinfo to view all files in a client index

As can be imagined, the verbosity of this command is highly variable, and will be extreme in
situations where a client has a large number of files in its backup indices. Yet, completely searching
client indices for a particular file is no more complex than running the above nsrinfo command
and then searching the results. On Linux/Unix servers, that can be as simple as:

nsrinfo clientName | grep file

Figure 38: Using nsrinfo on Unix to search for backed up files

On Windows, the alternative would be to use findstr as part of the command sequence:

C:\> nsrinfo clientName | findstr file

Figure 39: Using nsrinfo on Windows to search for backed up files

Keep in mind with this technique that extracting all the index details for a client, even when
immediately piping it to a search routine, could impact backup server performance. For example,
consider a moderately sized corporate fileserver with a million files – if there’s also a standard
backup process of say, weekly fulls and daily incrementals, with short-term backups retained for 6
weeks and long-term backups retained for 10 years, the number of files that would be output from

http://nsrd.info

© Preston de Guise, 2015 41

this version of mminfo would be mammoth. Assuming a 5% change on incrementals this would
equate to:

• 6 x 1,000,000 for weekly full backups
• 10 x 12 x 1,000,000 for monthly full backups (assuming a worst case scenario)
• 6 x 6 x (1,000,000 * 0.05) for daily incremental backups
• Totalling 127,800,000 files.

Left as an exercise for the reader, a more intelligent and less resource intensive solution would be
to use the following program logic:

• Accept as input:
o A client name
o A start date
o An end date
o A file path/name

• Query from mminfo all nsavetime times for:
o The client nominated
o Between the start and end date

• Loop through each nsavetime and run nsrinfo against it:
o Searching for the file path/name specified
o Output any matching entries

While the NetWorker Management Console now includes a file search option, the advantage of a
scripted file search is that it can be executed at any time. Taking a DevOps approach, this would
allow for situations where:

1. The script is made available via a web portal;
2. The script is made available for auditors;
3. The script is made available for eDiscovery purposes.

Obviously in each scenario it would be important to secure access to the script – for a multi-
tenanted backup solution, for instance (such as in (1), above), additional logic might be introduced
to prevent someone from entering an arbitrary client name, and instead making the client name a
selection based on appropriate criteria.

10 gstclreport
Technically, gstclreport is not a core NetWorker reporting tool. Instead, it stems from NetWorker
Management Console (NMC), which in theory can serve multiple NetWorker servers.

gstclreport is located in the NMC bin directory; on Unix, that will typically be /opt/lgtonmc/bin. On
Windows systems, the default install path is C:\Program Files\EMC NetWorker\Management\bin.

Running gstclreport requires an appropriately configured and accessible Java environment.
Running it without suitable Java access will result in the following:

http://nsrd.info

© Preston de Guise, 2015 42

Figure 40: Running gstclreport without an accessible Java environment

Before running gstclreport it is necessary to set a valid JAVA_HOME environment, and it is also
likely that the path to gstclreport is not in the default system executable path. For example, on
CentOS Linux, one might prepare a shell for gstclreport commands by setting up:

export PATH=$PATH:/opt/lgtonmc/bin
export JAVA_HOME=/usr/lib/jvm/java

On a Windows system, the command shell sequence might resemble:

set JAVA_HOME=C:\Program Files\java\jre7
set PATH=%PATH%;C:\Program Files\EMC
NetWorker\Management\GSTD\bin

(The line starting “set PATH” continues through to and includes the text “…GSTD\bin”.)

With the correct PATH and JAVA_HOME settings established, the output from gstclreport will
resemble the following:

Figure 41: Running gstclreport with JAVA_HOME correctly established

There are several distinct advantages of NMC reports:

• Their data is retained independently of the NetWorker indices and media databases, and
therefore can report on events not currently in the NetWorker databases;

• They can provide summary information that spans multiple NetWorker servers;

http://nsrd.info

© Preston de Guise, 2015 43

• They are designed with a considerably more graphical approach, and are more appropriate
for inclusion into regular management or auditor reporting.

In particular, one of the more common scenarios backup administrators are requested to report on
is failed backups. These typically aren’t included in the NetWorker media database, as it only
retains information on backups that have completed10.

We’ll start with the simplest invocations of gstclreport, using the following arguments:

• -u username – Specify the accessing NMC user account for running the report
• -r report – Specify the report name to run. This should optimally be specified in the full

path to the report
• -f filename – Specify the output filename
• -x format – Specify the export format (pdf, postscript, html, csv, print)

Using the report path example specified in the default output from gstclreport, the command
might resemble the following:

gstclreport -u administrator -r "/Reports/Users/User List"
-f userlist.pdf -x pdf

When run, gstclreport will prompt for the password for the specified user (in this case,
‘administrator’), and the execution sequence will resemble the following:

Figure 42: Generating a basic report out of gstclreports

An additional argument available to gstclreport is -P password, which allows the specification of the
NMC login password for the nominated user. This option should be used with caution, and should
never be used with the administrator account for NMC. When this option is used, the password is
visible to anyone who is able to perform a full process listing on the host the command is run on –
for Unix and Linux systems, this will typically be revealed to anyone running “ps -eaf” at the time
the command is executing. (Comparable techniques are available for Windows.)

If the password option is to be used for fully automating the generation of reports, one of the two
following techniques should be used:

• Create a dedicated ‘reports’ account in NMC without administrative privileges
• Use a scripting language such as Expect, which allows the scripting of automated

interactive processes

Many of the reports available in NMC have a variety of options available; these are accessible via
the -C option. The options available will vary by each report, and they can be viewed by running
the gstclreport with each of the options -h (help), -C, -u username and -r reportName. This will result
in gstclreport printing all available options for the selected report. For instance:

gstclreport –u username –h –r "/Reports/reportpath" –C

10 A notable excepting being that failed tape-based backups may be retained in the database until the tape is
recycled. This is declining in usefulness as disk based backups increase in adoption.

http://nsrd.info

© Preston de Guise, 2015 44

For instance:

Figure 43: Determining gstclreport configuration options

For example, to run the user audit report for just the server ‘orilla’, the command might look like
the following:

gstclreport -u administrator -r "/Reports/Users/User Audit"
-x pdf -f audit.pdf -C "Server Name" orilla

http://nsrd.info

© Preston de Guise, 2015 45

Figure 44: Generating a report with gstclreport and custom configuration options

Many of the reports in NMC (and therefore via gstclreport) can take a date or date range output.
Consider, for instance, the “Daily Summary” report. To determine what arguments it takes, run the
report with both the –C and the –h options:

gstclreport -u administrator -r "/Reports/NetWorker Backup
Status/Daily Summary" -x pdf -f last_7_days.pdf -h -C

This will output the full options available:

Figure 45: Dealing with date ranges in gstclreport (1)

http://nsrd.info

© Preston de Guise, 2015 46

To specify a group start time range, it’s important to first understand what date/time format the
server is going to expect. You can get prompted on this by running the command with a
nonsensical date/timestamp – e.g., an invalid start time of 88:88:88:

gstclreport -u administrator -r "/Reports/NetWorker Backup
Status/Daily Summary" -x pdf -f last_7_days.pdf -C "Group
Start Time" "88:88:88"

When run, this will trigger the following output:

Figure 46: Dealing with date ranges in gstclreport (2)

Directly before the help output, gstclreport has stated:

Could not parse the date time value "88:88:88"
Please use enter [sic] date in this format. "d/MM/yy h:mm:ss
a" i.e. "25/07/14 6:58:36 AM"

Generally, if gstclreport states that a time is to be included in the format, it’s optional. In this case,
the report can be run as follows:

http://nsrd.info

© Preston de Guise, 2015 47

gstclreport -u administrator -r "/Reports/NetWorker Backup
Status/Daily Summary" -x pdf -f last_7_days.pdf -C "Group
Start Time" "19/07/14" "25/07/14"

The output from this will resemble the following:

Figure 47: Dealing with date ranges in gstclreport (3)

You’ll note in the command that a full date range was specified – in this instance, we’re looking for
any group that started between 19 July 2014 and 25 July 2014. If instead you wanted to generate the
report for all backups since a particular date, you can just include the start date. For example:

gstclreport -u administrator -r "/Reports/NetWorker Backup
Status/Daily Summary" -x pdf -f july14_backups.pdf -C "Group
Start Time" "1/7/14"

In this scenario, the report will pick up all backups run from 1 July 2014:

Figure 48: Dealing with start dates only in gstclreport

11 Miscellaneous reporting
While mminfo, nsrinfo and gstclreport represent the core reporting functions available to the
NetWorker administrator, there are a few other tricks that should be in any NetWorker
administrator’s command line arsenal.

11.1 nsr_render_log
In NetWorker 7.4, EMC introduced the raw log format. The purpose of this was simple: to allow
logs to be written in a language neutral format so they can be viewed in a different language from
the install site if necessary.

The most common use of nsr_render_log resembles the following:

nsr_render_log infile.raw > outfile.log

Where:

• infile.raw is the name of the log file to be read
• outfile.log is the name of the resulting log file.

http://nsrd.info

© Preston de Guise, 2015 48

In both instances, infile.raw and outfile.log must be specified with the full intended path to the file –
otherwise NetWorker will attempt to read the file from the current directory, and your command
shell will attempt to write the rendered file to the current directory as well.

While there are other ways nsr_render_log might be invoked, the above will be the most common.
Alternately, as you may have gathered from the above syntax, another common invocation will be:

nsr_render_log infile.raw | more

The first invocation writes the rendered log to another file; the second writes it to standard out,
piping it to the more utility, which allows viewing on either platform.

There are a variety of other usage scenarios for nsr_render_log that are particularly useful for an
administrator in a hurry. As you’d know, the size of the log files can be quite variable; depending
on when services are restarted, some log files may grow to hundreds of megabytes or more. Sifting
through all that information, particularly for one or two specific events, for a particular time period
can become quite tedious. Depending on your own operating system or applications, merely
opening a large log file, once rendered, may be problematic.

In such situations, nsr_render_log has a few options that can help:

• -S startTime – Only render log entries from the given start time, in any NetWorker
acceptable format

• -E endTime – Stop rendering when the given end time is reached, expressed in any
NetWorker acceptable format

• -N lineCount – Render lineCount lines and stop
• -B startLine – Start rendering at the given line number
• -O program – Render logs coming only from a specific nominated program (e.g, ‘nsrmmd’)
• -G group – Render logs that have come from the nominated group
• -J host – Render logs that reference the given host (not to be confused with the server

hostname option, -H server)

For instance, consider the scenario where the client miranda has been having backup issues for the
last couple of days. To view details pertaining to it from the NetWorker server daemon.raw file, the
command used might be:

nsr_render_log -J miranda -S "2 days ago" daemon.raw

http://nsrd.info

© Preston de Guise, 2015 49

Figure 49: Using nsr_render_log for a specific client and date/time range

The nsr_render_log program has a variety of other options, including:

• -a – Don’t output the activity ID
• -c – Don’t output the category of events.
• -d – Don’t output timestamps
• (etc)
• -z – Obfuscate identifying/secure information
• -x exportSpec – Specify output specification (e.g., “-xc,” for comma separated, “-x’c \t’” for

tab separated output. Note that xml format is not applicable for nsr_render_log).

Be particularly careful of the -z option. While it is meant to completely replace all host names with
generic hosts, it doesn’t always do this (e.g., hostname references in index paths will still be cited).

11.1.1 Remote rendering
The nsr_render_log program is only capable of rendering log messages that have been produced by
the NetWorker options installed on the host it is run on. This becomes relevant if you are using
NetWorker modules – e.g., the NetWorker Module for Microsoft Applications or the NetWorker
Module for Databases and Applications.

In these situations, if you need to render a log generated by one of these modules, you need to
render it on a system with the module installed. Copying an nmm.raw log across to a Unix server
and trying to render it there will simply result in a series of ‘rendered’ messages about
nsr_render_log being unable to render the lines from the log file.

For instance, below is the final few lines of an nmm.raw log from an Exchange server backup,
rendered on a Linux backup server:

http://nsrd.info

© Preston de Guise, 2015 50

Figure 50: Rendering a log on a system without the originating module

11.1.2 Aside – Auto-rendered Log Files
NetWorker does have the option to automatically render raw files into log format on the fly,
writing them concurrently as the raw files are written. (If space is a concern, this option shouldn’t
be used – though it could equally be argued that if space occupied by log files is an issue, you have
bigger problems.)

Enabling auto-rendering is achieved via nsradmin, a tool we’ll cover in greater detail later. For now,
on any host you want to have logs automatically rendered on, you use the following sequence to
turn on automated log rendering:

• Run nsradmin against the local nsrexecd process

nsradmin -p nsrexecd -s localhost

• View the registered log files being managed

nsradmin> print type: NSR log

• Set a path in the runtime rendered log field for the specific log file

nsradmin> print type: NSR log; name: logname
nsradmin> update runtime rendered log: /path/to/logname.log

http://nsrd.info

© Preston de Guise, 2015 51

Figure 51: Configuring the runtime rendered log for a raw file

Once the runtime rendered log been set, it’s necessary to stop and restart NetWorker services on
the host to have the changes take affect. Using nsradmin will be covered in greater detail at a later
point in this guide. For now, to exit nsradmin, type ‘quit’ at the “nsradmin>” prompt.

Note:

• If you want to automatically parse the runtime rendered logs, bear in mind there is
currently a flaw with the way they are generated on Windows (to be fixed in a later
NetWorker release after 8.2.x). This flaw can result in what would be multiple individual
lines concatenated.

http://nsrd.info

© Preston de Guise, 2015 52

11.2 nsrsgrpcomp
Introduced in NetWorker 8 is the ability to access recent savegroup completion notifications from
the command line.

Run without any arguments, nsrsgrpcomp will provide a prompt on the various options available:

Figure 52: Options for nsrsgrpcomp

The most typical way of running nsrsgrpcomp is to extract the most recent savegroup completion
report for a particular group. This can be done by executing:

nsrsgrpcomp groupName

For instance:

Figure 53: Extracting the most recent savegroup completion details with nsrsgrpcomp

To determine what savegroup completion details are available for any given group, run the
command:

nsrsgrpcomp -L groupName

Figure 54: Listing savegroup completion information for a specific group

To access the details of a prior savegroup, use the -t timestamp option and specify either the
nsavetime or the exact time (down to the second) of the group execution:

http://nsrd.info

© Preston de Guise, 2015 53

nsrsgrpcomp -t timestamp groupName

For example:

Figure 55: Accessing details of a specific savegroup execution with nsrsgrpcomp

Note that groups are only accessible via this command for the period they are retained in the jobs
database.

You can equally get a list of all groups whose completion details can be printed by omitting the
group name in the list command:

nsrsgrpcomp -L

Figure 56: Obtaining a list of all available savegroup completion reports

To restrict the report to a single client, use the command:

nsrsgrpcomp -c clientName [-t timestamp] groupName

For an administrator debugging an issue at the command line this makes for a good way of quickly
checking what the output from the group was, even without access to email:

http://nsrd.info

© Preston de Guise, 2015 54

Figure 57: Accessing details of a specific client and group

An astute NetWorker administrator will know that these reports are also stored in the nsr/logs/sg
directory, with each group being a named directory underneath. However, the advantage of
nsrsgrpcomp is that it allows for information retrieval without searching those files, and the
information may be retrieved from a host other than the backup server using the “-s server” option:

Figure 58: Running nsrsgrpcomp from a host other than the NetWorker server

Another advantage of nsrsgrpcomp is the option to extract a subset of the information relating to a
backup. For instance, summary information may be extracted by using the -H option:

nsrsgrpcomp -H "Slow Servers"

http://nsrd.info

© Preston de Guise, 2015 55

Figure 59: Extracting summary information from nsrsgrpcomp

The summary information may be further refined by specifying a single client:

nsrsgrpcomp -H "Slow Servers" -c orilla.turbamentis.int

Figure 60: Refining nsrsgrpcomp summary output, by client

http://nsrd.info

© Preston de Guise, 2015 56

11.3 Using nsrwatch
The nsrwatch utility has been a main-stay of NetWorker on Linux and Unix platforms for a very
long time. (I remember using it in NetWorker v4.x, the oldest version I used as a server.)

In the most basic form, you can invoke it just by running:

nsrwatch

Figure 61: nsrwatch on a Unix platform

The nsrwatch screen is broken up into several key areas:

• Summary information – Server name, how long server has been running for, number of
saves and recoveries, etc.

• Devices – Each device on the server, what volume/pool is mounted on the device, and the
status (messages) for the device.

• Groups – Actively executing groups (and sometimes recently completed groups)
• Sessions – What backup, recovery or clone sessions are currently active.
• Messages – Key messages output by the backup server
• Pending – Notifications of where the NetWorker server requires intervention by an

administrator or operator.

Gone are the days when nsrwatch was only available for the Unix platform, however. On any
modern NetWorker environment, you’ll also find nsrwatch to be part of the Windows client
package as well.

http://nsrd.info

© Preston de Guise, 2015 57

Figure 62: Running nsrwatch on Windows

You’ll note that I mentioned nsrwatch is part of the Windows client package on modern
NetWorker installs. Similarly, it has always been part of the client package for Unix and Linux
installs. This immediately gives us our first option for running nsrwatch:

nsrwatch -s server

This will launch nsrwatch, pointing it at the nominated NetWorker server. Note that the results of
this may be variable if the host you’re running nsrwatch from is not a defined client of the
NetWorker server you’re intending to watch.

One of the things you’ll immediately note with nsrwatch is the amount you can see on screen is
directly proportional to your window size. For instance, consider a server with multiple devices:

Figure 63: More devices than nsrwatch will show

On such a server, running nsrwatch won’t immediately yield very much information about the
devices:

http://nsrd.info

© Preston de Guise, 2015 58

Figure 64: nsrwatch with limited screen space

However, that doesn’t mean you can’t see anything about the other devices. You can use the tab
key to jump between sections of display in nsrwatch, then when you’re within a highlighted
section, use the up and down arrow keys to scroll through the additional information in that
section:

Figure 65: Tabbing between different sections of nsrwatch

When in nsrwatch, you can turn off or on various sections by tapping particular keys:

Table 3: Display toggle options in nsrwatch

Key Display Field Toggled
d/D Devices.

Optional: a second tap of ‘d’ will display only mounted devices11.
g/G Groups
h/H Help
j/J Jobs

11 If the devices are already shown – such as when you first launch nsrwatch, the first tap will switch to only
mounted devices.

http://nsrd.info

© Preston de Guise, 2015 59

Key Display Field Toggled
m/M Messages
p/P Pending alerts
s/S Active sessions
t/T Tunnel connections
y/Y VMware protection policy

These allow you to quickly configure nsrwatch to just show you the information you’re specifically
after in a viewing session. For instance, the following shows the option to only display mounted
devices:

Figure 66: Viewing only mounted devices in nsrwatch

A final option to consider when using nsrwatch is the polling interval option. If your NetWorker
server is very busy (e.g., hundreds of simultaneous savesets backing up), or you’re connecting to it
via a very slow link, you may want to change the interval between polls of the NetWorker server.
This will slow down the updates in nsrwatch, but will be less impactful to a busy server or less
bandwidth intensive over a slow link. The default poll time is two seconds, but can be changed by
using a ‘-p seconds’ option when invoking nsradmin. For example:

nsrwatch -p 60

The above command would invoke nsrwatch with a refresh ratio of once every minute.

http://nsrd.info

© Preston de Guise, 2015 60

Control
Commands

12 Introduction
Many of the NetWorker command line utilities are to do with control of the application. Regardless
of whether you want to do something with backup and recovery, the media database or the
configuration, it’s likely there is a command line utility to help you.

We’re not going to look at all the command line options for NetWorker. Indeed, in particular,
backup and recovery options (for the most part) will be ignored – these are very well documented
in the respective guides, and don’t need additional coverage here.

Key topics we’ll be examining are:

• Devices and the Media Database
• Configuration
• Tape Libraries

http://nsrd.info

© Preston de Guise, 2015 61

13 nsrmm
13.1 What is nsrmm?
The nsrmm utility is your media management command. The activities you can use it for are neatly
bracketed into two distinct categories:

• Media manipulation
• Media database manipulation

13.2 Warning
This topic describes activities that, if misused, could cause loss of data on a NetWorker server,
either through removal of media database/saveset records, or through the premature overwriting
of NetWorker media.

Extreme caution should be taken with this topic, and the commands described should only be run
on a lab server unless you are absolutely certain with what you are doing and have practiced the
command in a lab first.

13.3 Lab Environment
For the exercises involving potentially destructive operations, we will use a lab server that has two
disk backup devices defined on it, Disk1 and Disk2. In addition to the standard bootstrap pools
automatically created by NetWorker, we will have two additional pools:

• Backup pool: DiskBackup
• Backup Clone pool: DiskClone

It is recommended you install NetWorker 8 or higher on the lab server – NetWorker 7.x and lower
uses slightly different disk device identification methods than v8.

13.4 Media manipulation
If you run nsrmm without any arguments, it will print the current volume status of all devices:

nsrmm

Figure 67: Default execution of nsrmm

Note that nsrmm returns the status of all devices, including tape (physical or virtual). For instance:

nsrmm

Figure 68: nsrmm output showing combined tape/disk device status

http://nsrd.info

© Preston de Guise, 2015 62

nsrmm may be used to mount or unmount volumes from standalone devices12 with the following
respective commands:

nsrmm -m -f device
nsrmm -u -f device

For instance:

Figure 69: Unmounting and mounting volumes with nsrmm

Equally, a device can be mounted read-only via nsrmm using the following command:

nsrmm -m -r -f device

For instance:

Figure 70: Mounting a volume in read-only mode with nsrmm

Many of the volume manipulation commands (via nsrmm for media database interaction) will
require volumes to be unmounted.

Note if you’ve mounted a volume as read-only, you need to unmount the volume in order to
remount it as read-write:

12 Actually, it can also be used in certain circumstances on jukebox devices as well, but it’s generally not
recommended.

http://nsrd.info

© Preston de Guise, 2015 63

Figure 71: 'Remounting' a read-only volume as read-write

The reason for this requirement is hinted at in the previous text: some changes to volume state can
only be achieved when the volume is not mounted – and the transition to read-only from read-
write or vice-versa is one of these.

The nsrmm utility can also be used to label a volume. The command for this is:

nsrmm -m -l -b pool -f device volName

Where:

• pool is the name of the pool the volume is to be assigned to; this must be specified in
exactly the same case as it is defined in NetWorker. If the pool name has spaces in it, enclose
it in quotes.

• device is the name of the device where the volume is (if tape) or is to be defined (if disk).
• volName is the intended name of the volume.

CAUTION – Lab Exercise

To label a volume on the device Disk1 into the DiskBackup pool, with a volume label of Disk.01, the
command used would be:

nsrmm -m -l -b DiskBackup -f Disk1 Disk.01

The default nsrmm command can be run after this to verify the completed operation:

Figure 72: Labelling a volume using nsrmm

Note that the ‘-m’ option in this command is not, technically required. However, running the
command without the ‘-m’ option will result in a label-without-mount operation, which is usually
undesirable. We can test this with the second disk backup unit:

nsrmm -l -b DiskBackup -f Disk2 Disk02

http://nsrd.info

© Preston de Guise, 2015 64

Figure 73: Labelling a volume without mounting it using nsrmm

(The label-without-mount operation might be used in scenarios where a volume needs to be
labelled, but you don’t want it used yet.)

A volume in NetWorker may be relabelled by using the label-with-relabel option:

nsrmm -mlR -f device

You’ll notice in the above command that we’re stacking arguments. This is a good short cut to get
used to in NetWorker. That is, instead of using arguments ‘-m -l -R', they’ve been reduced to ‘-mlR’.
Note as well that in theory the entire command could be reduced to ‘-mlRf device’ – however, it’s
generally advisable to maintain a habit of only stacking command line arguments that don’t take
options.

CAUTION – Lab Exercise

Figure 74: Relabeling a volume with nsrmm

If the volume you’re attempting to relabel is not actually recyclable, you’ll be prompted to confirm
whether you really want to proceed. This can be overridden by including a ‘-y’ flag, but you should
apply extreme caution to including the ‘-y’ option in nsrmm commands. Only do so when you are
absolutely certain what you want to do:

Figure 75: Automatically answering 'yes' to nsrmm prompts (dangerous)

The warning provided by NetWorker regarding a volume relabel is very real:

• For tapes, NetWorker will write a new label header and new double-EOF to the media;
NetWorker will never seek beyond the media – recovery from an erroneously labelled tape
will require forensic intervention by a specialist data-recovery company

• For file, adv_file and Boost devices, NetWorker will immediately delete all the stored
savesets on the filesystem

There are actually two styles of relabel actions against volumes. The one we’ve used so far is for
scenarios where you want to simply overwrite the existing volume but retain its label and pool.

http://nsrd.info

© Preston de Guise, 2015 65

Consider the scenario however where the goal is to relabel a volume mistakenly placed into the
incorrect pool. For instance, with two disk devices of Disk1 and Disk2, it might have been desirable
to label the volume for Disk2 into the DiskClone pool instead.

CAUTION – Lab Exercise

In this scenario, the relabeling operation reverts to a standard label operation instead:

nsrmm -m -l -f Disk2 -b DiskClone Clone.01

Figure 76: Labelling a previously labelled volume into a new pool

13.5 Media Database manipulation
While technically labelling or relabeling volumes is particular form of media database
manipulation, nsrmm can be used to more precisely affect the state of the media database by
targeting either savesets or volumes for specific operations.

There are several particularly useful options for nsrmm when it comes to media database
manipulation. These are:

• Changing the mode of a volume or saveset (-o mode)
• Deleting a volume or saveset (-d)
• Changing the browse and/or retention time of a saveset (-w time and -e time respectively)
• Erasing an advanced file type or Boost device (-E).

All of these options should be used with caution.

13.6 Changing the mode of a volume or saveset
You can change the mode of a volume or saveset by invoking nsrmm as follows:

nsrmm -o mode {-S SSID[/CID] | -V volumeID | VolumeName}

Where:

• ‘mode’ is one of the following:
o recyclable – Flags a saveset, saveset clone or volume recyclable
o notrecyclable – Flags a saveset, saveset clone or volume recyclable
o readonly – Flags a volume read-only
o notreadonly – Flags a volume not read-only
o offsite – Flags a volume as being offsite (quite distinct from setting an ‘offsite’

location in mmlocate)
o notoffsite – Clears the offsite flag for a volume
o scan – Flags a volume as requiring scanning
o notscan – Flags a volume as not requiring scanning
o full – Flags a volume as being full

http://nsrd.info

© Preston de Guise, 2015 66

o notfull – Flags a volume as being appendable13 (i.e., not full)
o manual – Flags a volume as requiring manual recycling (will not be automatically

recycled)
o notmanual – Flags a volume as not requiring manual recycling (can be

automatically recycled)
o suspect – Flags a volume as suspect (not eligible for consideration for recoveries)
o notsuspect – Removes the suspect flag for a volume

• SSID is a specific saveset ID to run the command against, or more specifically, SSID/CID is
a specific saveset ID and specific instance of a clone of that saveset to run the command
against

• volumeID is a specific volume ID to run the command against
• volumeName is a specific volume name (label) to run the command against.

For sites still using physical tape, and particularly a mix of physical tape and disk backup devices,
the offsite/notoffsite flags are particularly useful. Consider the eligibility criteria NetWorker
considers volumes for in order of recovery priority when the same saveset has multiple copies:

• Volumes currently mounted will receive highest priority
• Volumes that are nearline will receive next highest priority (i.e., in a tape library)
• If no volume is mounted or nearline, NetWorker will request the volume that has the

saveset instance with the lowest clone ID.

It’s the third option that isn’t always desirable. If using traditional disk backup devices (i.e.,
ADV_FILE devices) as staging locations, a reasonably typical process is:

• Backup to disk
• Clone immediately to tape, sent off-site
• (Later) Stage from disk to tape, removing disk copy. Tape copy is stored locally.

This model uses disk for short-term storage, with regular or longer-term retention periods being
serviced by tape. Since there should never be a single instance of any backup, savesets are copied
to tape twice – the first time as an actual clone operation, and the second as a staging operation
(usually when the disk backup devices have reached a particular capacity, or the savesets have
reached a particular age).

Each time NetWorker generates a copy of a saveset (including the original, first copy), it tags the
saveset instance as having a particular clone ID. This clone ID is the time the instance was
generated expressed as seconds since January 1, 1970 (GMT). Even if a saveset is staged, a new
instance is created (with a new clone ID), and the old is destroyed.

Thus, in our above scenario:

• Backup to disk (saveset with clone ID X)
• Clone to tape (saveset with clone ID Y, where Y>X)
• Stage to tape (saveset with clone ID Z, where Z>Y).

Therefore, if NetWorker needs to read from that particular saveset and all copies are currently on
tape, but neither tape is in a library, it will request the clone volume since it has the copy with the
lowest clone ID (the original instance, with clone ID X, has been removed from disk and the media
database by now).

13 Of course, marking a volume ‘notfull’ that NetWorker has flagged as full because it encountered the end of
physical media (or filled the device) will not allow additional writes to happen to the end of the volume. It
will just waste time.

http://nsrd.info

© Preston de Guise, 2015 67

If the neither volume is in the library but you want NetWorker to target the recovery from the
staged copy, which presumably is on-site, you can use the command:

nsrmm -o offsite cloneVolume

To tag the clone volume with the label identified by cloneVolume as being offsite.

Figure 77: Flagging a volume as being offsite

Thus, we can say that NetWorker actually uses the following method for prioritising volumes for
recovery purposes:

• Volumes currently mounted will receive highest priority
• Volumes that are nearline will receive next highest priority (i.e., in a tape library)
• If no volume is mounted or nearline, NetWorker will request the volume that has the

saveset instance with the lowest clone ID which is not flagged as being offsite.

(A good tip if you’re using the ‘backup to disk, clone to tape, stage to tape’ workflow is to have
operators or administrators automatically flag clone volumes as being offsite as they are sent
offsite.)

Two of the other common mode settings with nsrmm is to flag volumes as read-only and to change
the recyclability status of either a volume or saveset.

nsrmm -o readonly volumeName

Will mark the volume identified by ‘volumeName’ as being readonly. Note that this does not protect
the volume from being recycled, merely being written to, so it should be used with caution.

When used against a volume, the -o recyclable option will flag the entire volume as being
recyclable:

nsrmm -o recyclable volumeName

This not only flags the volume as recyclable, but all savesets on the volume as being recyclable.
Thus, for disk (ADV_FILE or Boost) devices, the next media cleaning/consistency check operation
(nsrim -X) will trigger a purge of the savesets from disk (if it has been subsequently mounted).

Consider the following scenario where a backup was written to the Disk.01 volume and it was
subsequently marked as recyclable:

Figure 78: Marking a volume as recyclable

Note in the example above that an attempt was made to mark the volume as recyclable while it was
still mounted – NetWorker will not permit this to happen. Instead, the user is prompted to
unmount the volume first.

http://nsrd.info

© Preston de Guise, 2015 68

In the example, we’ve also used a slightly different unmount command – unmounting by volume
name rather than device name.

Once the volume has been marked as recyclable, a custom mminfo command will confirm for us
that the saveset just generated has in fact been flagged as recyclable:

Figure 79: Saveset marked as recyclable via a volume being marked as recyclable

The recyclability option can be specified for a single saveset, or saveset instance as well, using the
command:

nsrmm -o recyclable -S SSID

or:

nsrmm -o recyclable -S SSID/CID

Where:

• SSID is a specific saveset
• SSID/CID is a specific saveset instance.

Be particularly mindful of situations where NetWorker allows you to specify either the saveset ID
or the saveset ID/clone ID. In these situations, it means that the command you use, if run against
the saveset ID only, will be applied to all instances of the saveset.

Note that some instances of NetWorker may require you to specify the Saveset ID/Clone ID combo
when flagging a saveset as not recyclable.

13.7 Changing Browse/Retention Time of a Saveset
The default browse/retention time for any new client in EMC NetWorker is a month, and year,
respectively. A common enough scenario when creating a new client is for the administrator or
operator to forget to set the appropriate browse and retention policy for the backups (at least, until
it becomes habitual).

This can mean that backups are generated with longer retention times than desired, and:

• If backing up to tape (physical or virtual), the media may not become recyclable at the
anticipated time due to these savesets;

• If backing up to disk (adv_file or Boost), the volume’s capacity may be more difficult to
manage than anticipated.

The nsrmm utility can be used to either shrink or extend the browse and/or retention period for a
saveset. This comes with a few practical considerations however:

• You cannot make the browse time longer than the retention time
• You cannot extend the browse time if the browse time has already expired

For instance, consider the ‘/root’ backup cited in the previous example:

http://nsrd.info

© Preston de Guise, 2015 69

Figure 80: mminfo output showing browse and retention time for a saveset

In this scenario, the backup was a manual one, set to expire just 5 days following the time of the
backup, and is typical of the sort of manual backup performed by system administrator to preserve
a few files prior to making a change. If the administrator subsequently decided that she wanted to
extend that browse and retention time for a month, she could use nsrmm as follows:

nsrmm -S SSID[/CID] -w bTime -e eTime

Where:

• SSID is the saveset ID of a single saveset
• SSID/CID is the saveset ID/clone ID of a single instance of a saveset
• bTime is the new browse time to be applied to the saveset or saveset instance
• eTime is the new retention (expiration) time to be applied to the saveset or saveset instance

The browse time and expiration time specified may be in any format accepted by NetWorker,
which means either a literal date expression (e.g., “27/07/2014”), or a fuzzy date format (e.g., “+1
month”). Note that both date formats have their caveats:

• The output date format for mminfo will reveal to you what short-form date format should be
used in specifying a new browse or retention date (e.g., the above mminfo output shows a
date format of DD/MM/YYYY);

• The ‘fuzzy’ date format must be preceded by a plus sign to indicate that it refers to a date in
the future.

Thus, the command in this example might be:

nsrmm -S 2493929846 -w "+1 month" -e "+1 month"

Figure 81: Changing the browse and retention time for a saveset

14 Tape library operations
14.1 nsrjb
A close cousin to the nsrmm command is the nsrjb command. While nsrmm focuses on devices and
the media database, nsrjb focuses on controlling jukeboxes (autochangers)14.

14 Some of the media database manipulation commands we’ve previously looked at, such as –o mode are
available with nsrjb as well. However, I usually recommend reserving nsrjb just for library operations.

http://nsrd.info

© Preston de Guise, 2015 70

Obviously, if you’re not using physical or virtual tape libraries, you should feel free to skip this
topic. If you have or can install a Linux based Lab NetWorker server and want to practice with tape
libraries, you can make use of the LinuxVTL project. For details on LinuxVTL, download the
micromanual from the NetWorker Information Hub at:

http://nsrd.info/micromanuals/download-linuxvtl.php

CAUTION – Lab Exercises

All the exercises described in the nsrjb section should be performed first in a lab if you are
not familiar with them. Exercises may reset the hardware state of a jukebox, label or relabel
media, or make media unavailable. Proceed with this topic with caution.

If you only have one jukebox, nsrjb will provide a basic summary of the contents of your jukebox
when run with no arguments:

nsrjb

Assuming you have a jukebox defined in NetWorker, this will produce output along the lines of the
following:

Figure 82: Standard nsrjb output

If you have multiple jukeboxes defined in your NetWorker environment and invoke nsrjb without
specifying the jukebox to run against, nsrjb will become an interactive command and prompt you
to specify the jukebox:

http://nsrd.info

© Preston de Guise, 2015 71

Figure 83: Invoking nsrjb without options in a multi-jukebox environment

To avoid this, you can invoke nsrjb as follows:

nsrjb -j jbName

Where ‘jbName’ is the defined name of the jukebox in NetWorker. For instance:

Figure 84: Invoking nsrjb against a specific jukebox

The nsrjb utility is typically used for the following activities:

1. Showing the jukebox contents
2. Inventory operations
3. Reset operations
4. Media labelling
5. Media loading and unloading
6. Media import and export

It’s important to note the difference between the first three activities listed above. To speed up
operations against jukeboxes, NetWorker maintains a cache within the resource database of the
current state of each jukebox. When an operation is performed against the jukebox, NetWorker
updates the state cache. This avoids having to do a full SCSI state probe of the jukebox each time
an operation is run, and considerably speeds up interaction with the device. Therefore:

1. Showing the jukebox contents – Displays the content of the jukebox per NetWorker’s
cache.

2. Inventorying operations – Refreshes the content of the jukebox cache from the SCSI bus.

http://nsrd.info

© Preston de Guise, 2015 72

3. Reset operations – Instructs the jukebox to perform a comprehensive reset in advance of a
new inventory operation.

In particular, option (3) becomes necessary in situations where jukeboxes have become wedged
through a hardware fault or non-NetWorker operations being performed on them, and option (2) is
recommended after media is added to or removed from the jukebox.

14.1.1 Showing the jukebox contents
Invoked without any arguments, nsrjb shows the NetWorker cache of the jukebox state. Additional
information can be displayed by invoking nsrjb with a ‘-v’ (verbose) option. For instance, based on
the jukeboxes cited above:

nsrjb -v -j VTL1

Figure 85: Using nsrjb with the verbose flag

Compared to the output shown in Figure 82, this provides the volume %used field for each volume
in the jukebox, making the output considerably more meaningful.

14.1.2 Jukebox Inventory
The jukebox inventory can be refreshed by using the ‘-I’ option. If you’re using a jukebox with a
barcode reader, you should eschew a plain ‘-I’ option in favour of the alternate fast inventory
operation, ‘-II’.

The ‘-II’ option instructs NetWorker to only inventory those volumes that have a recognised
barcode in the media database. This avoids a scenario where NetWorker loads unlabelled volumes
into tape drives and goes through a tedious attempted label-read operation on each tape. It’s the
option you would typically use when you’ve imported previously written media into the jukebox.

nsrjb -II -j jbName

For instance:

http://nsrd.info

© Preston de Guise, 2015 73

Figure 86: Running a fast inventory operation

The above output demonstrates NetWorker detecting volumes that already have matching
barcodes in the media database. Run against a jukebox with volumes that haven’t been labelled
gives a completely different result:

Figure 87: Using fast inventory when volumes have not previously been labelled

This leads us to the first key recommendation with nsrjb – any time you perform an activity
beyond the basic display of jukebox contents, you should use ‘-vvv’ in the command line. This
provides a high level of verbosity. For instance:

nsrjb -II -j VTL2 -vvv

http://nsrd.info

© Preston de Guise, 2015 74

Figure 88: Using nsrjb with higher levels of verbosity

The importance of ‘-vvv’ becomes apparent if we switch from fast inventory to regular inventory
mode:

nsrjb -vvv -I -j VTL2

For instance:

Figure 89: Performing a slow inventory using extended verbose mode

You’ll note in this mode that nsrjb becomes considerably chattier – the advantage being it reveals
exactly what operations it’s going to perform. It outlines, for instance, each load, verify label and
eject operation as it is performed.

http://nsrd.info

© Preston de Guise, 2015 75

14.1.2.1 Granular Control of the Jukebox
Whenever you’re performing operations with nsrjb, you can narrow down tape/volume operations
by:

• Slot
• Device
• Volume

These options are specified as:

Table 4: Options for limiting the extent of an nsrjb operation to particular volumes, slots or devices

Option Description
-S range Specify a slot range. May be a single slot or a dashed range (e.g., 31-45). You can

specify multiple slot options (e.g., -S 7 -S 9-16).
-f device Perform the requested operation using a specifically nominated device. This

can be used for loading and unloading media as well as labelling media.
volumeName You can also target specific volumes for nsrjb operations. The volume name(s)

must be listed at the very end of the command.

For example, consider a jukebox where we want to inventory (with an actual load and label read
operation taking place) just the tapes in slots 1, 3, 4 and 5. The following command could be used:

nsrjb -Ivvv -j VTL2 -S 1 -S 3-5

Output from this command might resemble the following:

Figure 90: Limiting a jukebox inventory to specific slots

Equally, if we wanted to repeat the same operation using only a specific device (e.g., /dev/nst6), we
could issue the command:

nsrjb -Ivvv -j VTL2 -S 1 -S 3-5 -f /dev/nst6

This would execute similarly to the example below:

http://nsrd.info

© Preston de Guise, 2015 76

Figure 91: Limiting jukebox operations to a particular device

We’ll cover an example of referencing volume names directly in section 14.1.4 (Labelling and
Relabeling Media).

14.1.3 Resetting a Jukebox
A jukebox can be reset using one of the following two options:

nsrjb -HE [-j jbName] [-vvv]

or

nsrjb -HHE [-vvv] [-j jbName]

The first reset command attempts to unload all devices in the jukebox and throws away the
NetWorker cache information for the jukebox, forcing a refresh. The second reset command
attempts a forced unload of all the devices in the jukebox and throws away the NetWorker cache for
the jukebox.

The -E option above instructs the jukebox to throw away any slot cache information and refresh it.
While theoretically the -H and -E options can be used independently, there is little practical value
in doing so.

The primary difference between -H -HH is how low-level a reset command is issued against the
tape drive(s) in the tape library. A -H option is less interruptive to the tape drives; a -HH option is
intended to try to forcibly reset a tape drive even if it’s busy.

If there are no tapes in any drives, a reset operation is reasonably straight-forward:

nsrjb -HEvvv -j VTL2

Figure 92: Basic jukebox reset command

However, if there’s a tape in any drive, the output from a reset command is as follows:

http://nsrd.info

© Preston de Guise, 2015 77

Figure 93: Jukebox reset command when there are volumes to unload

One thing you should be mindful of is how long a reset operation might take on any autochangers
you have configured. For virtual tape libraries this of course will be relatively short, but for
physical tape libraries that time may vary from between a minute to ten minutes depending on the
brand, size and number of tape drives15.

14.1.4 Labelling and Relabeling Media
There are two command line options in particular for nsrjb that are used in the labelling and
relabeling of media. These are:

• -L – Label a volume
• -R – Recycle a volume

A typical invocation of nsrjb to label a volume is as follows:

nsrjb -j jbName -L -b poolName -S slotRange

For instance, the media in VTL2 is currently unlabelled based on the lab examples we’ve done so
far. If I wanted to label the first three volumes in the library into the VTL Backup pool, I could use
the following command:

nsrjb -j VTL2 -Lvvv -b "VTL Backup" -S 1-3

Note I’ve included the ‘-vvv’ option again. It makes monitoring a label or relabel operation so much
simpler.

This would produce output such as the following:

Figure 94: Performing a media label operation

15 The best way understand this of course is to actually physically watch the autochanger while a reset
operation is being performed.

http://nsrd.info

© Preston de Guise, 2015 78

After the operation completes, we can run nsrjb for the nominated jukebox and verify the volumes
are now labelled and available:

nsrjb -j VTL2

Figure 95: Viewing the status of the jukebox after a label operation

The other labelling command is the -R option for volume recycling. Normally you shouldn’t need
to use this option – NetWorker handles volume recycling on an as-needed basis if you’ve
configured it correctly16.

Consider the VTL2 jukebox used in these examples again. If we realised the volume in slot 3 should
have actually been labelled into the “VTL Clone” pool, we can relabel it into that pool as follows:

nsrjb -j VTL2 -LRvvv -b "VTL Clone" -S 3

Note that NetWorker will prompt to confirm if you really want to do this:

Figure 96: Recycling a volume into another pool

16 Note that I am not referring to auto media management (AMM) for tape libraries. The use of AMM is
unrelated to recycling operations.

http://nsrd.info

© Preston de Guise, 2015 79

Recycling operations don’t actually require you to specify a pool name. If you don’t, the volume
will be recycled back into the pool it was currently labelled in.

You may wonder what the difference between the –R and –L options are. They become more
evident if we actually perform the operation against a volume that’s flagged as recyclable. For
instance, the volume in slot 42 in VTL1 on this lab server is recyclable, and so issuing the command:

nsrjb -j VTL1 -LRvvv -S 42

Results in an immediate recycle, without any prompting.

Figure 97: Using the recycle option against a recyclable volume

14.1.5 Loading and Unloading Volumes
For the most part, NetWorker automatically handles the loading and unloading of volumes within
jukeboxes. Indeed, the standard settings in NetWorker these days will have it automatically unload
volumes after they’ve been idle for 10 minutes.

There are some times though when you may want to manually load or unload a volume:

• Loading:
o When you’re preparing to conduct a test and you want the media online

immediately
o When you’re performing an operation and you want to override NetWorker’s

default volume selection criteria (e.g., next volume to use for a backup) by loading a
specific volume

o When you want to do a bootstrap recovery using a tape library17
• Unloading:

o When you’re preparing to export media from the tape library
o When you want to change the mode on volumes18

The command line options for load and unload are:

• -l – Load a volume
• -u – Unload a volume
• -nl – Load but do not attempt to mount a volume

17 This is a special operation compared to normal load operations.
18 As we saw in the nsrmm section, you can’t perform a volume mode change (e.g., setting it to ‘readonly’)
while it is mounted in a drive.

http://nsrd.info

© Preston de Guise, 2015 80

Examples of these operations are as follows – the ‘-vvv’ option has been left off for demonstration
purposes:

nsrjb -l -j VTL2 -S 1

Figure 98: Performing a volume load operation

nsrjb -u -j VTL2 900001L4

Figure 99: Performing a volume unload operation, by volume name

You’ll notice in the above command we unloaded the volume by name rather than by slot number.
(Note there is no command line switch before a volume name.) If you wanted to unload a volume

http://nsrd.info

© Preston de Guise, 2015 81

by slot number, you’d have to be careful to use the same slot number that is shown against the
device in the nsrjb output.

nsrjb -nl -j VTL2 -S 1 -f /dev/nst7

Figure 100: Loading a volume without mounting it

Notice the difference in the output between this nsrjb command and the one used in Figure 98 – in
that nsrjb output, we see:

drive 2 (/dev/nst7) slot 1: 900001L4 (mounted)

However, in the most recent nsrjb command output, we only saw:

drive 2 (/dev/nst7) slot 1: 900001L4

That’s NetWorker’s way of telling you the volume had been loaded, but it hasn’t attempted to read
the volume label.

The load-without-mount operation is most commonly used in the following circumstances:

• When preparing to do a bootstrap recovery after a loss of (at least the media database)
• When preparing to scan a volume in from another NetWorker server

In both of those scenarios, NetWorker won’t recognise the volume label it reads from the tape. By
default, when this happens, NetWorker ejects the tape – something that is undesirable if you
actually want to read from it or scan it.

14.1.6 Exporting and Importing Media
Most tape libraries (even virtual ones) have the concept of a Cartridge Access Port (CAP) or mail
slot. If you’re using a physical tape library the chances are high you’ll need to periodically remove
tapes from the library to free up capacity (or to off-site them), and that you’ll need to add media to
the library19.

19 Opening the library door and manually adding tapes to slots or removing them results in extremely chaotic
operations unless you do a full reset and inventory afterwards. It’s not recommended.

http://nsrd.info

© Preston de Guise, 2015 82

Even if you’re using a VTL, you may want to make use of the virtual CAP/Mail Slot for the
following reasons:

• The VTL may support a vaulting function, where more media is defined than is loaded in
the library at any given time

• Volumes in the CAP or Mail Slot are not eligible for NetWorker to use for operations until
they’ve been imported into the main slot range, which neatly allows you to get particular
volumes temporarily out of the way.

The CLI options for these functions are:

• -w – Withdraw a tape from the library and place it in the CAP
• -d – Deposit a tape from the CAP into the library

For instance:

nsrjb -w -j VTL2 -S 1

Would withdraw the tape in slot 1 of VTL2 into VTL2’s CAP.

Figure 101: Withdrawing a volume into the CAP

After the volume has been withdrawn, the output from ‘nsrjb’ shows a completely empty slot 1:

Figure 102: Jukebox state after a withdraw operation

The deposit function works is (mostly) designed for interactive prompting for scenarios where an
operator may be loading more tapes into the library than there are slots in the CAP. For instance:

nsrjb -d -j VTL2 -S 1

http://nsrd.info

© Preston de Guise, 2015 83

Figure 103: Performing a deposit operation

You’ll notice there was no inventory operation performed after that deposit, yet NetWorker
recognised the volume. When the “match barcode labels” option is turned on in NetWorker, newer
versions of NetWorker will automatically inventory volumes based on matching barcodes when
they are deposited into the library.

14.2 Low level interaction
So far our activities with NetWorker and jukeboxes have been conducted with nsrjb, which is the
preferred way to work with it. However, there are times you want to dig a little lower and work
with or interrogate a library directly.

CAUTION – Lab Exercises

All the exercises described in this low-level interaction section should be performed first in a
lab if you are not familiar with them. Exercises may reset or hang SCSI busses if performed
incorrectly, or against an active bus. Additionally, exercises may result in media ending up in
locations not known about by NetWorker. Proceed with this topic with caution.

Note that all of the commands in this section can be used regardless of whether NetWorker is up or
down.

To be able to do this, we first have to know the SCSI target/LUN/bus numbers of our tape libraries.
Thankfully, NetWorker has a utility to provide this information to us, and that’s inquire.

The two most common ways of invoking inquire are:

inquire -l
inquire -lp

The first inquire command lists all SCSI targets. The second lists all SCSI targets and outputs
(where possible and supported) using persistent device names. To understand the difference,
consider the output from both:

inquire -l

http://nsrd.info

© Preston de Guise, 2015 84

Figure 104: Standard inquire output

On the other hand:

inquire -lp

Figure 105: The inquire command with persistent device names

In both cases, the SCSI Bus/Target/LUN information is presented in the scsidev@b.t.l component
of the output. For instance, this tells us we have a jukebox accessible on scsidev@2.0.0.

14.2.1 sjisn
The simplest low level library operation for us to execute is sjisn. This reports the serial numbers
for devices in the tape library in the device order defined in the tape library. Depending on your
cabling for tape libraries (particularly physical ones), the device order within the library may not

http://nsrd.info

© Preston de Guise, 2015 85

match the actual device order presented to the operating system, and sjisn can help you cross-
reference those hardware devices to the OS device paths. This can be particularly helpful when
you’re wanting to configure a jukebox via jbconfig or have a jukebox with devices shared across
multiple hosts.

The sjisn command is invoked as follows:

sjisn b.t.l

Where b.t.l is the matching bus, target and LUN for the library.

For instance:

sjisn 2.0.0

Figure 106: Output from sjisn

From this output, we can tell for instance that the first drive defined within the library (“Drive at
element address 500”) has the serial number XYZZY_A1, which based on the previous inquire
0utput (see Figure 104) is device /dev/nst0 on the server.

14.2.2 sjirdtag
For the sjirdtag command, we’ll use the smaller VTL defined on the lab server – VTL2. The
relevant inquire output for this is:

http://nsrd.info

© Preston de Guise, 2015 86

Figure 107: Inquire output showing second jukebox

This tells us the second jukebox is on scsidev@3.0.0.

The syntax for sjirdtag is:

sjirdtag b.t.l

Where b.t.l is the bus, target and LUN number of the jukebox we want to probe.

For, for our lab server, the command would be:

sjirdtag 3.0.0

Figure 108: Output from sjirdtag

The sjirdtag is a fabulously useful utility if you’re using NetWorker with jukeboxes. It reports that
current contents of the jukebox as reported by the jukebox, not based on the NetWorker cache of the
jukebox contents. That’s not to say the nsrjb output isn’t useful – it is, and for the most part, you’ll

http://nsrd.info

© Preston de Guise, 2015 87

rely on that. But being able to see what the jukebox is reporting about its own content is very useful
when identifying unlabelled volumes or trouble-shooting issues.

The output for sjirdtag is broken up into the following sections:

• DATA TRANSPORT – Refers to the tape drives themselves
• STORAGE – Refers to the primary slot range
• MEDIA TRANSPORT – Refers to the robot arm(s) within the jukebox
• IMPORT/EXPORT – Refers to the contents of the CAP/Mail Slot.

For each section, sjirdtag will tell you specific details about the component as well as media that
may be there. For instance, in the output below, neither drive currently has a tape in it:

Tag Data for 3.0.0, Element Type DATA TRANSPORT:
 Elem[001]: tag_val=0 pres_val=1 med_pres=0 med_side=0
 Elem[002]: tag_val=0 pres_val=1 med_pres=0 med_side=0

However, if we use nsrjb to load a tape and then run sjirdtag again, we see additional information
in the DATA TRANSPORT section:

Figure 109: Noting changes to reported information in sjirdtag

You’ll see that “Drive Elem[002]” now reports a med_pres=1 flag, meaning media is present, and
underneath that line reports the volume tag (barcode) for the volume in the drive – 900001L4.
Additionally, if we look at slot 1 in the storage section (Elem[001]) we see the med_pres=0 flag,
meaning the media is no longer present in that slot.

14.2.3 sjimm
Sometimes it may be necessary to move media around in a library without using nsrjb. It could be
that the services are shutdown and you need to quickly get media out, or it could be that you’re
trying to diagnose whether an issue lays with NetWorker or the tape library itself. In any of these
situations, sjimm can come to the rescue. The mm in the utility name refers to move media.

The syntax for sjimm is:

sjimm b.t.l source destination

Where:

• b.t.l is the SCSI bus, target and LUN number of the tape library
• Source is the location where the media currently is
• Destination is the location where you want the media to go

Both source and destination are defined as:

http://nsrd.info

© Preston de Guise, 2015 88

{drive | slot | inlt } number

Where the number refers to the reported number via sjirdtag. Drive refers to a tape drive, slot
refers to a primary slot number, and inlt refers to the CAP slots.

Two things of note with sjimm:

• sjimm does not handle ejecting media. If you want to transfer media from a drive to a slot,
the media needs to be ejected from the drive first;

• If you use sjimm to move media around, you should only do so when NetWorker isn’t
trying to use the library, and you should make sure to reset and reinventory the library in
NetWorker after you’re complete.

For example, the following command moves a tape from slot 5 in the library at 3.0.0 to slot 2 in the
CAP:

sjimm 3.0.0 slot 5 inlt 2

Following is an example of the command being run and the subsequent sjirdtag output:

Figure 110: Using sjimm

http://nsrd.info

© Preston de Guise, 2015 89

15 nsradmin
15.1 Warning
This topic describes activities that, if misused, could cause corruption to a NetWorker
configuration database. As such, they should only be run on a freshly installed NetWorker lab
server, rather than an active production server. You should assume all examples in this section are
prefaced with ‘CAUTION – Lab Exercise’.

As is the case with all production systems, power-user commands have the capability to both
significantly help successful operations, or to significantly hinder successful operations if used
incorrectly. Before actively using any of the techniques described in this topic, you should be
completely familiar with their usage from self-training in a lab environment. Furthermore, you
should always have an up to date bootstrap backup to recover should anything go wrong.

15.2 Getting Started
If you’ve worked with NetWorker from within the management console (or previously, from one of
the OS-specific GUIs), you’re more than likely aware of how configuration components such as
clients, schedules, groups, policies, etc., look within the GUI. For example, here’s what a policy
looks like:

Figure 111: NMC view of a NetWorker resource

The configuration details for such a policy are maintained as part of a plain text file on the
NetWorker server, stored within the ‘res’ directory. On a Unix/Linux system, this is typically in
/nsr/res, and on a Windows system the default install location is “C:\Program Files\EMC
NetWorker\nsr\res”.

Previously NetWorker only ever had 3 configuration files within the res directory:

• nsr.res – Most configuration options
• nsrjb.res – Jukebox, device and label template configuration options
• nsrla.res – Security/Port configuration options

Unfortunately, with just 3 files yet many resources within each file, corruption was not uncommon,
and so in NetWorker 7.0, a new and much improved resource database structure was introduced.
This saw the content of nsr.res and nsrjb.res split up and configured as individual files, located
under a new directory, (‘nsrdb’) within the ‘res’ directory, and organised in a hashed structure.

http://nsrd.info

© Preston de Guise, 2015 90

(Over time, nsrla.res was similarly split up, and organised into a hashed directory structure
underneath ‘nsrladb’ in the same parent directory, ‘res’.)

For instance, looking at a Unix NetWorker server, you may find directories and files such as the
following:

Figure 112: NetWorker resource database as files and directories

Each one of those lengthy named files is a single NetWorker configuration resource – a policy, or a
client, or a schedule, etc.

For example, the NetWorker resource file for the ‘Week’ policy on a server in my lab looks like:

Figure 113: NetWorker resource in plain text

It’s very important to note here that you should not, unless directed to by your support provider,
ever directly manipulate the actual files within the resource database. While they may be plain
text, they should be treated like binary database files and edited with the appropriate tools instead.

In this case, the appropriate tool for editing the resource database is nsradmin.

15.3 Offline vs Online
NetWorker’s nsradmin utility supports two modes of accessing a resource database. These are:

• Online – Instead of interacting directly with the files, nsradmin interacts with the
appropriate NetWorker daemons on an actively running NetWorker server in order to
retrieve, review and update information.

• Offline – If the server is not currently running, nsradmin can instead be pointed at
either a configuration file or database, and interact directly with these files. Certain
“dynamic” parts of the configuration that depend on access to the media database, etc.,
are not presented in this mode.

When working with nsradmin, it’s always very important to ensure that you choose the right
method. A simple rule is that if the NetWorker server is running, you should never, ever attempt to
use nsradmin directly against the files in the configuration database. Doing so could cause serious
corruption to your NetWorker environment requiring a bootstrap recovery to restore functionality.

The primary focus for this guide will be online mode.

http://nsrd.info

© Preston de Guise, 2015 91

15.4 Your Lab Environment
Throughout this topic, there will regularly be examples of commands that you should run. For this
reason, you are required for the purposes of the training to install a temporary instance of
NetWorker on a spare host or virtual machine.

Our test/lab environment for this guide will therefore be one where you have:

1. Installed the NetWorker server/client/storage node software appropriate to your operating
system, downloaded from the EMC Support website, or from your own local repository, on
a workstation or laptop.

2. Have not applied any license keys – this will allow the NetWorker server to run in
evaluation mode for 30 days, which is more than enough time to make your way through
the manual.

3. Configured two disk backup units – devices of type “ADV_FILE”.

Do not use this environment for production backups.

Throughout this manual, we will assume that on your temporary NetWorker server you’ve created
the following components prior to continuing:

1. A group called “Test”.
2. A client instance for the NetWorker server, with one or two handpicked directories as the

save sets. Optimally, you should be looking for a total backup size of between 1 and 3 GB, so
that there is enough occupied space to be able to observe backups, but not so much space
that it takes a lengthy time for examples to finish.

3. A backup pool called “Test” that has the “Test” group assigned to it.
4. A backup clone pool called “Test Clone”.
5. Two advanced file type disk backup units:

a. One labelled in the “Test” pool.
b. The other labelled in the “Test Clone” pool.

15.5 Running nsradmin
In order to run nsradmin on a host, you must at least have the NetWorker client software installed.
On Unix/Linux platforms, nsradmin will usually be installed into /usr/sbin, and on Windows
platforms, the default install location will be “C:\Program Files\EMC NetWorker\nsr\bin”20 (it
should however be in the execution path).

To see the usage options for nsradmin, run it with an option of ‘-?’:

20 Older versions of NetWorker had a default install path on Windows of “C:\Program Files\Legato” rather
than “C:\Program Files\EMC NetWorker”. If you’ve upgraded from an older to a newer version, the default
path is kept.

http://nsrd.info

© Preston de Guise, 2015 92

Figure 114: Command line options for nsradmin

If no options are provided to nsradmin, it expects to connect to a NetWorker server running on the
current host. Running it on a non-NetWorker server without directing it to either a resource file,
directory or NetWorker server will result in the following error:

Figure 115: Running nsradmin on a client without referencing a server

15.6 Syntax Overview
Like most NetWorker interactive commands, the first keyword to use is help. This gives you a brief
overview of all the options available in the command. For instance:

http://nsrd.info

© Preston de Guise, 2015 93

Figure 116: Getting help from nsradmin

While almost all actions in nsradmin are the same regardless of whether you’re working on
Windows or a Unix/Linux platform, it should perhaps be noted that the edit and visual commands
are not available on Windows. To be consistent across operating system types, we’ll restrict
ourselves to using nsradmin without these options.

Additional information on how individual commands within nsradmin work can be obtained by
using either “help command” or “? command”, such as shown below:

Figure 117: Getting help on individual commands with nsradmin

http://nsrd.info

© Preston de Guise, 2015 94

Another good command to use in nsradmin is the types command, which shows you all the
resources that nsradmin will allow you to interact with:

Figure 118: Determining valid configuration types in nsradmin

Note that the types that are available will change depending on NetWorker version or what
program you’re communicating with. For instance, nsradmin can be invoked against a client
program (nsrexec) using the command:

nsradmin -p nsrexec -s clientName

Figure 119: Viewing types for nsradmin against the client program

(An example use of this invocation was outlined in the Reporting section, nsr_render_log.)

To exit from nsradmin, issue the command quit. Returning to nsradmin against the Lab backup
server itself, we’ll look at viewing individual resources. Run the following against your lab server,
where serverName is the hostname of the lab server:

nsradmin -s serverName

You can view resources in nsradmin by using the print command. This prints and sets the current
query.

Referring to the help, nsradmin tells us:

http://nsrd.info

© Preston de Guise, 2015 95

Figure 120: nsradmin help for the 'print' command

Global help for nsradmin explains a little more about queries:

Where:
 query ::= attrlist
 attrlist ::= attribute [; attribute]*
 attribute ::= name [: [value [, value]*]

Thus, to view all policies, we’ll be issuing a query that has a single attribute in its attribute list, and
that attribute will be a simple name: value pair.

The command used will be:

nsradmin> print type: NSR policy

On a fresh lab server, the output from this command might resemble the following:

http://nsrd.info

© Preston de Guise, 2015 96

Figure 121: Displaying all policies on a NetWorker server

The output of course, runs over – a default NetWorker server has policies of:

• Day
• Week
• Month
• Quarter
• Year
• Decade

If you want to just quickly see what policies exist, without seeing any details about them, you can
use the show command to tell nsradmin what you’re interested in. The show command works as
follows:

nsradmin> show [attributeNameList]

If issued without any arguments, it clears any previous restrictions on what is to be shown.

The attributeNameList, if specified, will be one or more resource attribute names, semi-colon
separated. For preciseness, each name should be terminated by a colon21. Thus, if we only wanted
to see the names of the policies on the NetWorker server, the command would be:

nsradmin> show name:
nsradmin> print type: NSR policy

If we’ve stayed in nsradmin, the command might look like the following:

21 This is optional, but guarantees precision, and is therefore preferred.

http://nsrd.info

© Preston de Guise, 2015 97

Figure 122: Viewing just policy names

You’ll note that the print command was reduced to print, rather than print type: NSR policy. There’s
a reason for that. Remember the help for print, which said:

usage: print [query] (set current query)

For this second command, we’re leveraging the set current query aspect of the print command. The
print command not only displays the output from the query, but stores in nsradmin memory the
current query, so that subsequent commands, if desired, can be ‘shortcut’ to be run against the
current command.

If we wanted to limit nsradmin to showing us a single policy – let’s say the Week policy, then the
command becomes:

nsradmin> print type: NSR policy; name: Week

This uses the attribute list aspect of the query command. You’ll recall an attribute list is a series of
one or more attributes, semi-colon separated. Running the command will result in:

Figure 123: Viewing a single policy in nsradmin

There’s more attributes to a policy than just the name – nsradmin is still honouring the previous
show command. So, use the command ‘show’ by itself to turn off the previous restrictions, followed
by a ‘print’ by itself to re-print the last query:

http://nsrd.info

© Preston de Guise, 2015 98

Figure 124: Turning off display restrictions and re-printing a query

In addition to the show command, which limits the results to particular attributes, there is also the
option command, which enables features or the display of resources not normally required. You
can see what options are available by running the option command by itself:

Figure 125: nsradmin 'option' command

These features can be enabled or disabled by using the following syntax:

nsradmin> option feature
nsradmin> option feature: off
nsradmin> unset feature

The first command turns a feature on. The second two are both valid commands for turning the
feature off. For instance, if we enable the hidden feature and print the year policy, we see:

http://nsrd.info

© Preston de Guise, 2015 99

Figure 126: Viewing hidden details of NetWorker resources using the option command

The hidden option includes information that you’d normally see in the NetWorker Management
Console by enabling diagnostic mode.

The “dynamic” display option turns on the display of additional attributes that are considered
intermittent. The “Raw IL8N” turns off rendering of internationalisation text; the “Resource ID”
turns on the display of each resource’s unique ID attribute, and the “regexp” option is more of an
input option, allowing the use of (some) regular expressions.

If you happen to be using an older version of NetWorker and some of the examples suggest to
show particular attributes that don’t subsequently turn up when you run the command, your first
port of call will be to turn on the hidden and dynamic display options – previous versions of
NetWorker may not have always shown requested attributes if those modes weren’t turned on.

15.7 Starting and Stopping Backups

15.7.1 What you’ll need
In order to complete this section, you’ll need to have configured a test setup as per section 15.4,
Your Lab Environment. As a result, you should have:

• An ADV_FILE type device with a volume labelled into the “Test” backup pool
• An ADV_FILE type device with a volume labelled into the “Test Clone” backup pool.
• A group called “Test”.
• A client instance for the backup server that has saveset(s) of around 1-3GB.

http://nsrd.info

© Preston de Guise, 2015 100

15.7.2 Monitoring
On Unix, Linux and Windows platforms, you can monitor backup activities by running nsrwatch in
another terminal/DOS session. Alternatively, you can access the Monitor tab in the NetWorker
Management Console.

15.7.3 Starting a Backup
There are three ways that a group can be started:

• Automatically, as its scheduled time or part of a probe schedule.
• From the command line on the server by running the appropriate savegrp command.
• Within NetWorker Management Console or nsradmin by adjusting its autostart property to

Start Now.

If you’ve only ever manually run a group in NetWorker Management Console, and you never
recall changing the autostart property to “Start Now”, don’t be concerned. When you start a group
out of the Monitoring area of NMC, you don’t see this option, but that’s what NetWorker does in
the background for you.

While flexible, a primary failing of running a savegroup manually from the command line is that it
cannot be aborted from within either NetWorker Management Console or from a utility such as
nsradmin. This makes managing the backup somewhat challenging. Starting the group from within
NMC or nsradmin takes away that issue though.

To start a backup within nsradmin, you use the following steps:

1. Set the query to specify the group.
2. Change the ‘autostart’ field to Start Now.

You can set the query by either visibly using the print (or delete) command, or invisibly via the
special dot command (.). The dot command sets the query without printing any output. I’m not a
big fan of this – if you make a mistake in nsradmin, you could find yourself needing to recover your
bootstrap due to a corrupted configuration. As such, I believe you should be in the habit of always
setting your query in such a way as you get to see the output of the query22.

You can always use the show command first to limit the amount of information that will be printed.
Since a group resource is considerably more complex than a time policy, we’ll use show to limit
what we see. The command sequence then would be:

nsradmin
nsradmin> show name:; autostart:
nsradmin> print type: NSR group; name: Test
nsradmin> update autostart: Start Now

In this scenario, the process for starting the Test group would resemble the following:

22 A few very limited examples in this manual will demonstrate the dot method.

http://nsrd.info

© Preston de Guise, 2015 101

Figure 127: Starting a group from within nsradmin

This introduces a new command in nsradmin, the update command. This instructs nsradmin to alter
the resources that match the current query to use the attribute values we’re about to specify. What’s
important here is that it works on the current query. If you were to run nsradmin and attempt to run
the update command without first establishing a query, nsradmin will use the default query, which
maps to all resources. This, to be blunt, is something you would normally not want to do.

If you are going to use the dot command instead of the print command, limit it to the following
scenarios:

• You’re scripting, and you’ve already tested the query
• You’ve become sufficiently trained in nsradmin that you are very comfortable with what

you’re doing and can do a bootstrap recovery at the drop of a hat (just in case).

A note about the autostart attribute:

We started a group by changing the autostart attribute from its current
value (in our case, Disabled) to “Start Now”. Normally when you update a
value, you’d expect to see that update stick, right? Well, normally that is
the case, but the autostart attribute of the group resource (as well as a few
other attributes across various resources) is a special attribute that
supports both regular value changes as well as action settings. In this case,
the value settings permitted are Enabled and Disabled. The action setting
permitted is Start Now. When an attribute is updated with an action
setting, NetWorker will start the action requested, but leave the attribute
value in its previous state.

15.7.4 Stopping a Running Backup
We can equally stop a running backup as well. To do this, we want to re-run the Test group, but
since no schedule has been defined, there’s a good chance it would do an incremental backup now.
To change that and force a full backup each time the group runs, we’re going to set the group’s level
setting to full. The commands for that are:

nsradmin
nsradmin> show name:; level:
nsradmin> print type: NSR group; name: Test
nsradmin> update level: full

With output included, the above sequence looks like the following:

http://nsrd.info

© Preston de Guise, 2015 102

Figure 128: Setting the level of a group to 'full' always

Now that’s been done, we’re going to first start the group, wait to see it running in nsrwatch, then
stop it.

To stop a group, you’ll use another of those toggle fields like autostart, but this time the field is
called stop now. The stop now field has two potential settings:

• False (default)
• True (used for aborting a running group).

The entire sequence is shown below:

Figure 129: Starting and then stopping a group

You’ll notice we used the show command here to show four fields:

nsradmin> show name:; autostart:; status:; stop now:

http://nsrd.info

© Preston de Guise, 2015 103

The status field is what is referred to as an information-only field. That details the current state of the
group (idle, running, cloning, etc.), but you can’t directly manipulate that field. Instead, to stop the
group, we used the stop now field, as shown above.

15.8 Checking the Status of a Group
There’s very little you can do in NMC or nsrwatch that you can’t (in some form or another) achieve
in nsradmin. Checking the status of a group is one of those things. There are a few attributes that
you can look at within a group to determine its running status:

• status – Indicates whether the group is running, idle or cloning.

• completion – A dynamic setting that shows save sets that have completed, and their
statuses23.

• work list – Savesets that have not run yet (pending).

For example, if we look at our just-stopped group, we get some details about where it was up to
when it was aborted, and its current state:

Figure 130: Checking the status of a group

(You’ll note that since this server is running 8.2, the ‘completion’ field does not show up.)

Consider the ‘work list’ field – this is actually presented as a series of triplets:

• The first is the client the saveset is for
• The second is the saveset level and operation
• The third is the actual saveset

To see this more clearly, restart the group and view the work list once backups are running. This
might resemble the following:

Figure 131: Understanding the work list

In this work list, there are 2 pairs of triplets:

• The first:
o Client ‘tara’
o Level full, operation: ‘save’

23 This may not show correctly under NetWorker 8.2.

http://nsrd.info

© Preston de Guise, 2015 104

o Save set: ‘/’
• The second:

o Client ‘tara’
o Level: 9, operation ‘index’
o Save set: ‘index’.

15.8.1 Cloning and Monitoring
So far we’ve only seen two potential states for a group – running, or idle. There is a third state
though – one that’s provided when a group is cloning. To see what that state is like, we’ll need to
modify our group “Test” to clone to the “Test Clone” pool. This is readily accomplished by
modifying the attributes as follows:

• Set the clones attribute to “Yes”
• Set the clone pool attribute to “Test Clone”.

To better see what we’re doing, we’ll also use the “show” setting again to reduce the number of
details displayed to a minimum – type, status, autostart, clones and clone pool. The process will
work as follows:

• Set the show settings appropriately
• Print (and set the current query to) the Test group.
• Update the cloning attributes and run the group.
• Wait until the group starts cloning.
• Print the test group again to view the new status.

If you’re changing the attributes you want shown, be sure to issue the “show” command by itself
first to clear any previous settings.

The commands to make these changes and then start the group are as follows:

Figure 132: Turning cloning on for a group

You can monitor the group in another session using nsrwatch or NMC. Once the group starts
cloning, use the ‘print’ command in nsradmin again to display the new status:

http://nsrd.info

© Preston de Guise, 2015 105

Figure 133: Group status while cloning

15.9 Append vs Update
So far when we’ve been altering settings in NetWorker resources, we’ve been using the update
command. There’s another command, append, which works in a different yet equally useful way.

Let’s move away from groups for the moment, and consider clients. In particular, one of the most
critical attributes for a client is its save set setting. While normally this should be set to ‘All’ for
filesystem backup client instances, there may be times when it’s necessary to have individually
named save sets.

What we will do is alter the save set settings for our server. Currently they’re set to ‘All’, but we’ll
reduce them first to a single save set (/usr/share), then increase them using the append command.
This will resemble the following:

nsradmin> show name:; type:; save set:
nsradmin> print type: NSR client; name: backupServer
nsradmin> update save set: /usr/share
…
nsradmin> append save set: /root, /etc
…
nsradmin> print

The advantage of append should be immediately obvious: if you have a complex or long value
already set for a particular field and you want to keep all the existing details, it’s both faster and
safer to simply append the new value rather than re-typing the entire value.

Obviously, you can’t use append for all options – you can’t for instance append another value to a
Boolean/selector style field such as the ‘autostart’ parameter for the group resource. Or more
precisely, you can only append values to fields that can take multiple values.

http://nsrd.info

© Preston de Guise, 2015 106

Figure 134: Using append instead of update

In this case, Windows will be slightly different – within nsradmin, it’s necessary to escape
backslashes by using a preceding backslash, and keep the paths in quotes (due to the colon). Thus,
if a Windows client already had a save set of C:\Temp and we wanted to add C:\Documents and
Settings, the sequence might resemble the following:

nsradmin> show name:; save set:
nsradmin> print type: NSR client; name: clientName
…
nsradmin> append save set: "C:\\Documents and Settings"
…

Using a client called ‘faraway’, this sequence would be as follows:

Figure 135: Specifying Windows save sets in nsradmin

15.10 Setting up regular backup components
So far, we’ve relied on our resources already existing, and we’ve just been modifying them or
getting NetWorker to perform specific actions with them. Now however, we want to look at creating
new resources.

http://nsrd.info

© Preston de Guise, 2015 107

To do this, we’re going to setup the core components that would typically be used in a new
NetWorker configuration, notably:

1. Browse/Retention Policies
2. Schedules
3. Groups
4. Clients
5. Pools

Rather than using NetWorker Management Console for any of these, we’ll do the complete setup
within nsradmin.

15.10.1 Browse and Retention Policies
As you’d know from using NMC, a policy is neither a browse, nor a retention policy, until it is
actually assigned to a client, group or pool – until then it’s nothing more than a simple definition of
time.

We’ll create “Daily” and “Monthly” policies, with the details being as follows:

• Daily – A period of 5 weeks
• Monthly – A period of 13 months

When creating a new NetWorker resource and you’re not familiar with nsradmin, the easiest way to
get a handle on it is to look at an existing resource. We know from previous sections there is a
‘Month’ policy, so let’s look at that again:

Figure 136: The 'Month' policy

This tells us the attributes we’ll need to set are:

• type
• name
• period
• number of periods

If you’re unsure of what the period types are that you can use, you can view all the current, in-use
period types using the following command:

nsradmin> show period:
nsradmin> print type: NSR policy

On our server, the output will resemble the following:

http://nsrd.info

© Preston de Guise, 2015 108

Figure 137: Viewing the different period types available to NetWorker policies

Obviously the effectiveness of this technique will be dependent on how many resources there are
of a particular type. When there are quite a few resources, it’s usually more effective to resort to the
command reference guides. For Unix and Linux, you can view the documentation for any resource
type by running “man nsr_type” – e.g., in this case, “man nsr_policy”. (These manual pages are
included in the NetWorker command reference guide, and thus available for all platforms.)

We want to create a Monthly policy that gives us a time period of 13 months, as a Daily policy that
gives us a time period of 5 weeks. The commands will therefore be:

nsradmin> create type: NSR policy; name: Daily; period:
Weeks; number of periods: 5
…
nsradmin> create type: NSR policy; name: Monthly; period:
Months; number of periods: 13

When executed, this will appear as follows:

Figure 138: Creating Daily and Monthly policies

http://nsrd.info

© Preston de Guise, 2015 109

Note:

• If a command is longer than a line, you can either let it naturally flow onto the following
line or ensure you press enter after using a value and ending the line with a semi-colon.

To verify the policies now exist, use the print command:

Figure 139: Viewing the newly created Daily and Monthly policies

15.10.2 Schedules
Our next step is to configure a Daily and Monthly schedule for our backups. These schedules will
work as follows:

• Daily – Fulls on Friday, incrementals Saturday to Thursday, and the last Friday of the
month skipped;

• Monthly – Skips every day of the month, except for the last Friday of the month, where it
does a full backup.

If you’ve only worked with schedules in NMC, they’ll look a little different in nsradmin. Consider
the Default schedule:

Figure 140: Settings for the Default schedule

The three key attributes of a schedule (other than the name and type) are:

http://nsrd.info

© Preston de Guise, 2015 110

• period – This specifies the schedule period. It will be either week or month. This in turn
defines how NetWorker will interpret the action attribute.

• action – A list of levels to be performed on consecutive days. For a week period, this action
list covers Sunday through Saturday, in that order. For a month schedule, the action list
covers the first through to the thirty-first, in that order.

• override – Any special changes to the backup to suit particular dates or special days.

At this point it may look like creating schedules is easier in the GUI – but nsradmin has a few
shortcuts up its sleeve. Let’s first consider the Daily schedule, where we want:

• Full backups on Friday
• Incremental backups all other days of the week
• Skip the backup on the final Friday of every month.

The first two requirements translate to attributes as follows:

• period is defined as ‘Week’
• action is defined as ‘incr incr incr incr incr full incr’

There’s already one nsradmin short-cut we can take in the above details: nsradmin doesn’t need
the full length description of each level. Therefore, the action list could be shortened to “i i i i i f i”.
However, that’s not the main short-cut.

In the standard calendar view of a schedule in NMC, an override to skip the last Friday of every
month would necessitate:

• Select the schedule, then, right-click the last Friday, go into the ‘override’ drill down menu
and choose ‘skip’.

• Repeat for as many months as necessary (or until you get tired of it)
• Setting a calendar reminder to extend the skips from the month you stopped at

However, nsradmin, like the non-calendar view of NMC, allows you to enter a “set once” style
override, namely:

• override – “skip last Friday every month”

So, our create statement will look like the following:

nsradmin> create type: NSR schedule; name: Daily;
period: Week; action: i i i i i f i;
override: skip last Friday every month

Executing this will work as follows:

http://nsrd.info

© Preston de Guise, 2015 111

Figure 141: Creating the Daily schedule

Moving on to the Monthly schedule, we’ll see the other shortcut offered by nsradmin. You’ll recall
our goal is:

• Skip every day of the month except for the last Friday of the month
• Do a full backup on the last Friday of the month

You could, if you wanted, create an action list of “skip skip skip skip … skip” that has 31 entries in it.
We already know we can shorten level names, so this could at least drop down to 31 x “s”: “s s s s s s
s s s … s”.

Another way to go about it is to treat the schedule like a Weekly one (since the override will
accomplish everything we want), and then just use a 7-day action list: “s s s s s s s”. But, that’s still
not the easiest way of doing it.

Earlier I said the action list for a month is 31 days long – that means if you have a Month based
schedule with 31 entries in it and it is applied to February, all those extra days after the 28th or the
29th (if it’s a leap year) are ignored. Equally however, the action list supports being shorter than the
time period (week or month). When this is the case, the action list is looped by NetWorker to cover
any ‘missing’ days in the list. Thus, our Monthly schedule can be created as follows:

nsradmin> create type: NSR schedule; name: Monthly;
period: Month; action: s;
override: full last Friday every month

http://nsrd.info

© Preston de Guise, 2015 112

Here’s what it looks like being run:

Figure 142: Creating the Monthly schedule

If you look in NMC, you’ll see these schedules have been correctly accepted:

Figure 143: Daily schedule as shown by NMC

http://nsrd.info

© Preston de Guise, 2015 113

Figure 144: Monthly schedule as shown by NMC

15.10.3 Groups
Now the schedules and time policies have been created, we can move on to create the Daily and
Monthly groups that we’ll use to execute our backups with.

As always, when creating a new resource, it’s a good idea to see what options are available using an
existing one – in this case we’d use the Default group:

http://nsrd.info

© Preston de Guise, 2015 114

Figure 145: Viewing the Default group

A group is significantly more complex in options than either a policy or a schedule, so it won’t fit
within a standard window length. Run the command yourself and view output carefully:

nsradmin> print type: NSR group; name: Default

When we create a new group, we’re going to make use of the following attributes:

• type – NSR group
• name – Daily
• autostart – Enabled
• start time – “21:35”
• schedule – Daily
• browse policy – Daily
• retention policy – Daily

By setting the schedule to Daily, we ensure that all clients added to this group are backed up with
the same schedule, which works in most circumstances. Setting the browse and retention policy to
Daily means all backups executed by the group have those browse and retention policies applied24.

Our create command for the Daily group will therefore be:

nsradmin> create type: NSR group; name: Daily;
autostart: Enabled; start time: "21:35"; schedule: Daily;
browse policy: Daily; retention policy: Daily

Within nsradmin, the command will execute as follows:

24 Almost all. NMC database backups don’t inherit this feature.

http://nsrd.info

© Preston de Guise, 2015 115

Figure 146: Creating the Daily group

Our create command for the Monthly group will be quite similar, except we’ll be swapping the key
word ‘Daily’ for ‘Monthly’ in every occurrence. We’ll also change the start time slightly, because no
two groups should start at the same time in NetWorker:

nsradmin> create type: NSR group; name: Monthly;
autostart: Enabled; start time: "21:40"; schedule: Monthly;
browse policy: Monthly; retention policy: Monthly

When executed, this will resemble the following:

Figure 147: Creating the Monthly group

15.10.4 Clients
So far we’ve created policies, schedules and groups, and now its time for the clients. We won’t
actually be backing anything up, so rather than worrying about allocating test machines, we’ll just
create a couple of dummy hosts file entries, such as:

10.117.118.119 test1 test1.my.lab
10.117.118.120 test2 test2.my.lab

The above subnet is a private one, so there’s a good chance it won’t interfere with anything else,
but check before setting up your hosts file entries that the IP addresses chosen (and the hostnames)
don’t appear on your network or in DNS respectively.

On a Linux or Unix NetWorker server, you can add those entries into /etc/hosts. On a Windows
NetWorker server, you’d add the entries to C:\windows\system32\drivers\etc\hosts. (On both, it’s
usually a good idea to restart the NetWorker services after manually adding hosts entries.)

http://nsrd.info

© Preston de Guise, 2015 116

Once the hosts file entries have been created, we can create the client entries. We’ll create one
entry for each client, giving each entry the longer browse and retention policy (since these fields
can’t be blank). We’ll assign browse and retention policies at the group level, and we’ll also assign
the retention policy at the pool level (which will catch ‘errant’ save sets like the NMC database).

As per previous resources, we’ll start by looking at an existing client – in this case, the backup
server itself, which was placed in the ‘Test’ group earlier:

Figure 148: Viewing an existing client instance

While there are a lot of potential attributes you can use for creating a client, we’ll be limiting
ourselves to the following attributes:

• type
• name
• browse policy
• retention policy
• group
• save set
• parallelism
• aliases

Looking at our first client, test1, our create command will be:

nsradmin> create type: NSR client; name: test1;
browse policy: Monthly; retention policy: Monthly;
group: Daily, Monthly; save set: All; parallelism: 1;
aliases: test1, test1.my.lab

Executed in nsradmin, this will appear as follows:

http://nsrd.info

© Preston de Guise, 2015 117

Figure 149: Creating a new client in nsradmin

You’ll note there’s a typo in the above – the aliases were entered incorrectly25. We can fix this by
printing the client then changing the aliases:

nsradmin> print type: NSR client; name: test1
…
nsradmin> update aliases: test1, test1.my.lab

The second client creation command will be quite similar to first, though this time without the
typo:

Figure 150: Second client create command in nsradmin

15.10.5 Pools
The final configuration components to be setup are the pools. We’ll define four pools – Daily,
Daily Clone, Monthly and Monthly Clone. We won’t be backing up to these pools, so there won’t
be any need for additional advanced file type devices or media.

We’ll start, as we always do, by looking at an existing pool. In this case, the Default:

25 You’ll note that NetWorker allowed an alias used that by rights was incorrect. NetWorker doesn’t do name
resolution checking on aliases, as aliases may refer to private names defined only on the client.

http://nsrd.info

© Preston de Guise, 2015 118

Figure 151: Viewing the Default pool in nsradmin

While there are a variety of attributes available for pools, we’ll focus on just a few particular ones,
namely:

• type
• name
• enabled
• pool type
• groups
• retention policy
• store index entries
• auto media verify
• recycle to other pools
• recycle from other pools

The last two entries, normally turned off for pools, are used to replace the need for a Scratch pool
within NetWorker. Rather than putting media in one “special” pool to subsequently pull out when

http://nsrd.info

© Preston de Guise, 2015 119

media is needed for a backup or a clone job, NetWorker allows us to specify that pools can take
recyclable media from other pools, and donate recyclable media to other pools.

The third last option, auto media verify should be something you turn on for most, if not all pools.
For a small performance hit, it actually does verification reads on parts of savesets, making it a
powerful tool in ensuring your backups are recoverable. (Or rather, confirming the media is
readable.)

The “store index entries” attribute is set to “Yes” by default, which is appropriate for backup pools.
However, NetWorker requires this setting to be set to “No” for Backup Clone pools.

The create command for the Daily pool will be as follows:

nsradmin> create type: NSR pool; name: Daily; enabled: Yes;
pool type: Backup; groups: Daily; auto media verify: Yes;
recycle to other pools: Yes; recycle from other pools: Yes;
retention policy: Daily

When executed in nsradmin, this will look like the following:

Figure 152: Creating the Daily pool in nsradmin

Note:

If you get an alert about needing to create a label template first, or to re-create the resource in
order to automatically create a label template: it’s time to upgrade to a newer version of
NetWorker.

The command to create the Daily Clone pool will be similar, except we won’t specify any groups,
and we will include the store index entries attribute. The command will resemble the following:

nsradmin> create type: NSR pool; name: Daily Clone;
enabled: Yes; pool type: Backup Clone;
auto media verify: Yes; recycle to other pools: Yes;
recycle from other pools: Yes; retention policy: Daily;
store index entries: No

When executed in nsradmin, this will look like the following:

http://nsrd.info

© Preston de Guise, 2015 120

Figure 153: Creating the Daily Clone pool

The Monthly and Monthly Clone pools will be almost exactly the same as the dailies, just replacing
‘Daily’ for ‘Monthly’ in every occurrence:

Figure 154: Monthly pool

http://nsrd.info

© Preston de Guise, 2015 121

Figure 155: Monthly Clone pool

That’s it for the configuration we want to create, but there is one thing left to be done – like any
good backup environment, we’ll want our configuration to automatically clone. Now the pools
have been created, we can finally make those changes.

15.10.6 Revisiting the Groups
We had previously configured the Test group to clone to the Test Clone pool, and we’ll use the
same procedure to change the Daily group to clone to the Daily pool, and the Monthly group to
clone to the Monthly pool. These commands will be as follows:

nsradmin> show name:; clones:; clone pool:
nsradmin> print type: NSR group; name: Daily
…
nsradmin> update clones: Yes; clone pool: Daily Clone
…
nsradmin> print type: NSR group; name: Monthly
…
nsradmin> update clones: Yes; clone pool: Monthly Clone
…

When executed in nsradmin, this will resemble the following:

http://nsrd.info

© Preston de Guise, 2015 122

Figure 156: Configuring the Daily and Monthly groups to clone

15.11 Monitoring Devices
Another basic activity you can perform with nsradmin is monitoring devices while activities are
running. This is relatively easy, and since it can be easily scripted, handy for both on-the-spot
checks and performance analysis.

Let’s look at a device:

http://nsrd.info

© Preston de Guise, 2015 123

Figure 157: Viewing a device in nsradmin

Note:

If you’re using NetWorker 7.6.x or lower, AFTD devices are named based on their directory path –
for instance, the device shown above, under 7.6.x would be called “/aftd/backup”26.

The fields in particular we want to look at when monitoring devices are:

• message
• message_I18N

What we’ll do is to start the Test group from before, and monitor what the devices do, both on
backup, then clone. To do this, we’ll step through the following sequence:

1. Start the Test group.
2. Update our show command to just show name, message and message_I18N.
3. Print (and set the query for) the current devices.
4. Periodically re-print the status during backup.

This will resemble the following:

26 But you really should upgrade to an 8.x release as soon as possible.

http://nsrd.info

© Preston de Guise, 2015 124

Figure 158: Viewing active devices using nsradmin

Note – if you’re working in an English-language only environment, you can choose to leave out the
message_I18N field.

As you can see by this, even if you have a NetWorker server running on Windows and can’t get to
NMC, you can at least check to see what the devices are doing.

15.12 Deleting Resources
For the last of the basic exercises with nsradmin, we’re going to delete the Daily and Monthly
setup. There are two ways that deletions can be done:

• Run delete by itself, and it will offer to delete the resources that match the currently set
query.

• Run with a query, delete query, and it will set the current query and offer to delete the
resources that matches the just-set query.

Almost all of the time you should only perform delete operations using the second method.
Particularly if you’re doing any scripted deletes, you should definitely only use the second method.
With that in mind, all delete exercises will be of the form delete query.

http://nsrd.info

© Preston de Guise, 2015 125

As you might have noticed when using NMC, NetWorker usually doesn’t let you delete resources
that have dependencies. For instance, you can’t delete a group if it is still referenced by a pool, etc.
So sometimes, in order to delete, we have to backtrack parts of the configuration.

The first set of resources we can delete are the clients – these aren’t referenced anywhere else, so
it’s safe to get rid of them with the following command:

nsradmin> show name:; save set:; group:
nsradmin> delete type: NSR client; group: Daily

You’ll note in the above that we’re not specifying each client individually. Because we want to undo
everything we’ve done, we can shortcut the client deletions by deleting all clients in the Daily
group:

Figure 159: Deleting clients using nsradmin

Moving on, we’ll first change our groups Daily and Monthly to not use the clone pools, then we can
delete the groups followed by the pools. We’ll use a previously not shown option to clear the clone
pool setting. This will be done as follows:

nsradmin> show name:; clones:; clone pool:
nsradmin> print type: NSR group; name: Daily
…
nsradmin> update clones: No; clone pool:
nsradmin> . type: NSR group; name: Monthly
nsradmin> update clones: No; clone pool:

Note for the first group I used the print command, but for the second group I used the set (.)
command. This was merely to demonstrate the interchangeability of the commands.

When executed in nsradmin, this will resemble the following:

http://nsrd.info

© Preston de Guise, 2015 126

Figure 160: Turning cloning off for groups

With the clone pools removed from the groups, we can now go on and remove the pools. Note that
if we had actually generated backups or clones to these pools, it would be necessary to delete the
volumes containing those backups/clones prior to deleting the pool resources.

The commands to delete the pools will be:

nsradmin> show name:
nsradmin> delete type: NSR pool; name: Daily Clone
nsradmin> delete type: NSR pool; name: Monthly Clone
nsradmin> delete type: NSR pool; name: Daily
nsradmin> delete type: NSR pool; name: Monthly

Of course, using the show command before a delete isn’t required, but it makes it a good way of
reducing the clutter/superfluous information on-screen and allowing you to more readily see and
confirm what you’re deleting.

In nsradmin, this sequence would appear as follows:

http://nsrd.info

© Preston de Guise, 2015 127

Figure 161: Deleting pools in nsradmin

With the pools deleted, we’ll move on to delete the groups, schedules and policies:

nsradmin> show name:; type:
nsradmin> delete type: NSR group; name: Daily
nsradmin> delete type: NSR group; name: Monthly
nsradmin> delete type: NSR schedule; name: Daily
nsradmin> delete type: NSR schedule; name: Monthly
nsradmin> delete type: NSR policy; name: Daily
nsradmin> delete type: NSR policy; name: Monthly

This entire sequence will resemble the following when executed in nsradmin:

http://nsrd.info

© Preston de Guise, 2015 128

Figure 162: Deleting the groups, schedules and policies

That ends the basic coverage of nsradmin. The remaining topics are now going to introduce the
real power of nsradmin – using it non-interactively and in scripting.

15.13 Bulk Commands
Consider the scenario where say, 20 new servers were going to be added to the environment.
They’ll all be standard build systems without databases, which means using either NMC or
nsradmin in interactive mode will be tedious to add the systems.

However, can do it quickly and efficiently via a non-interactive nsradmin session, using a
combination of copy/paste and quick editing in a text file.

In order to demonstrate this, we’ll need to extend our previous 2 entries in the hosts file, adding
another 18. Previously we established hosts entries of:

10.117.118.119 test1 test1.my.lab
10.117.118.120 test2 test2.my.lab

Now, add another 18 test host entries, so this section of your hosts file reads:

10.117.118.119 test1 test1.my.lab
10.117.118.120 test2 test2.my.lab
10.117.118.121 test3 test3.my.lab

http://nsrd.info

© Preston de Guise, 2015 129

10.117.118.122 test4 test4.my.lab
10.117.118.123 test5 test5.my.lab
10.117.118.124 test6 test6.my.lab
10.117.118.125 test7 test7.my.lab
10.117.118.126 test8 test8.my.lab
10.117.118.127 test9 test9.my.lab
10.117.118.128 test10 test10.my.lab
10.117.118.129 test11 test11.my.lab
10.117.118.130 test12 test12.my.lab
10.117.118.131 test13 test13.my.lab
10.117.118.132 test14 test14.my.lab
10.117.118.133 test15 test15.my.lab
10.117.118.134 test16 test16.my.lab
10.117.118.135 test17 test17.my.lab
10.117.118.136 test18 test18.my.lab
10.117.118.137 test19 test19.my.lab
10.117.118.138 test20 test20.my.lab

For the purposes of our example only, we’ll use some more Default settings in NetWorker. In a
real-world scenario, we’d already have groups, schedules, pools, etc., configured. Instead of going
through and setting all these up, we’ll just specify the name, aliases and parallelism, and have
NetWorker fill in all the other details for us.

Next, create a text file that has the following entries:

create type: NSR client; name: test1; aliases: test1,
test1.my.lab; parallelism: 1
create type: NSR client; name: test2; aliases: test2,
test2.my.lab; parallelism: 1
create type: NSR client; name: test3; aliases: test3,
test3.my.lab; parallelism: 1
create type: NSR client; name: test4; aliases: test4,
test4.my.lab; parallelism: 1
create type: NSR client; name: test5; aliases: test5,
test5.my.lab; parallelism: 1
create type: NSR client; name: test6; aliases: test6,
test6.my.lab; parallelism: 1
create type: NSR client; name: test7; aliases: test7,
test7.my.lab; parallelism: 1
create type: NSR client; name: test8; aliases: test8,
test8.my.lab; parallelism: 1
create type: NSR client; name: test9; aliases: test9,
test9.my.lab; parallelism: 1
create type: NSR client; name: test10; aliases: test10,
test10.my.lab; parallelism: 1
create type: NSR client; name: test11; aliases: test11,
test11.my.lab; parallelism: 1
create type: NSR client; name: test12; aliases: test12,
test12.my.lab; parallelism: 1
create type: NSR client; name: test13; aliases: test13,
test13.my.lab; parallelism: 1
create type: NSR client; name: test14; aliases: test14,
test14.my.lab; parallelism: 1
create type: NSR client; name: test15; aliases: test15,
test15.my.lab; parallelism: 1
create type: NSR client; name: test16; aliases: test16,
test16.my.lab; parallelism: 1
create type: NSR client; name: test17; aliases: test17,
test17.my.lab; parallelism: 1
create type: NSR client; name: test18; aliases: test18,
test18.my.lab; parallelism: 1
create type: NSR client; name: test19; aliases: test19,
test19.my.lab; parallelism: 1

http://nsrd.info

© Preston de Guise, 2015 130

create type: NSR client; name: test20; aliases: test20,
test20.my.lab; parallelism: 1

Save the file as “bulk-create.nsri”. Ensure when saving the file that there is a blank line at the
bottom of the file – if the file ends on the same line as a command, nsradmin may not execute the
final command. (Note that the extension is optional, but it’s best to pick an extension and stick with
it.)

We’re going to get nsradmin to run all the commands in that file without going into interactive
mode. If you’re on Linux or Unix, you can run it as:

nsradmin -i file

Where file is the name of the file you’ve created.

On Windows systems, you may be able to run it as simply as the above – or else, you might have to
call the full path to the file, i.e.:

C:\> nsradmin -i X:\Path\to\file

Assuming we’ve saved bulk-create.nsri in the current working directory, the execution would appear
as follows:

Figure 163: Bulk addition of clients to NetWorker using nsradmin

All commands you use in nsradmin interactively can be used non-interactively. For instance, if you
wanted to remove all those clients from NetWorker, you’d create a script file (say, bulk-delete.nsri)
with the following content:

delete type: NSR client; name: test1
delete type: NSR client; name: test2
delete type: NSR client; name: test3
delete type: NSR client; name: test4
delete type: NSR client; name: test5
delete type: NSR client; name: test6
delete type: NSR client; name: test7
delete type: NSR client; name: test8

http://nsrd.info

© Preston de Guise, 2015 131

delete type: NSR client; name: test9
delete type: NSR client; name: test10
delete type: NSR client; name: test11
delete type: NSR client; name: test12
delete type: NSR client; name: test13
delete type: NSR client; name: test14
delete type: NSR client; name: test15
delete type: NSR client; name: test16
delete type: NSR client; name: test17
delete type: NSR client; name: test18
delete type: NSR client; name: test19
delete type: NSR client; name: test20

This could then be run as:

nsradmin -i bulk-delete.nsri

Output from the delete would be similar to the following:

Figure 164: Performing a bulk delete in nsradmin

15.14 Scripting
Consider a scenario where you want support/operations staff responsible for setting up new
servers in the backup environment to have simple commands they can run to interactively fill in
the details required for new clients within NetWorker. This will require scripting.

Note:

• For the examples used in this section, there’ll be no input validation. For more
comprehensive scripting of nsradmin, you’d be advised to use a good scripting language
such as Perl or Python, and perform appropriate input validation to ensure the values you
feed through to nsradmin are acceptable.

http://nsrd.info

© Preston de Guise, 2015 132

15.14.1 Introductory Scripting
A less ambitious starting point will get us going with scripting. Consider a scenario where you want
a script that will create a new day-based policy for you after you supply a policy name and a
number of days.

On Windows, this might be called “create-policy.bat” and it would have the following content:

@echo off
echo Creating a new policy
set /p name="Enter policy name: "
set /p days="Enter number of days: "

> command.nsri echo create type: NSR policy; name: %name%;
>> command.nsri echo period: Days; number of periods: %days%
>> command.nsri echo print type: NSR policy; name: %name%

nsradmin -i command.nsri
del command.nsri

Running this might result in a session such as the following:

Figure 165: Running the create-policy.bat script

On Unix/Linux systems, using Perl we could do a similar function with the following script, called
“create-policy.pl”:

#!/usr/bin/perl -w

use strict;
print "Enter policy name: ";
my $policyName = <>;
chomp $policyName;

print "Enter number of days: ";
my $numDays = <>;
chomp $numDays;

if (open(CMD,">command-$$.nsri")) {
 print CMD "create type: NSR policy; name:
$policyName;\n";
 print CMD "period: Days; number of periods: $numDays\n";

http://nsrd.info

© Preston de Guise, 2015 133

 print CMD "print type: NSR policy; name: $policyName\n";
 close(CMD);
 system("nsradmin -i command-$$.nsri");
 unlink("command-$$.nsri");
} else {
 die "Unable to create command-$$.nsri\n";
}

When executed, this script will produce output such as the following:

Figure 166: Script to create a new policy on using Perl

15.14.2 Setting up for Scripted Client Creation
Before we configure a script for client creation, we’ll create the resources the script will rely on.
This will be another good use of creating bulk scripts – rather than creating the resources
manually, we’ll create a single file with all the setup command required.

Create a new text file called ‘create-resources.nsri’ with the following content:

create type: NSR policy; name: Daily; period: Weeks;
number of periods: 5

create type: NSR policy; name: Monthly; period: Months;
number of periods: 13

create type: NSR schedule; name: Daily; period: Week;
action: i i i i i f i; override: skip last Friday every month

create type: NSR schedule; name: Monthly; period: Month;
action: s; override: full last Friday every month

create type: NSR group; name: Daily; autostart: Enabled;
start time: "21:35"; schedule: Daily; browse policy: Daily;
retention policy: Daily

create type: NSR group; name: Daily MSSQL; autostart:
Enabled;
start time: "21:55"; schedule: Daily; browse policy: Daily;
retention policy: Daily

create type: NSR group; name: Monthly; autostart: Enabled;
start time: "21:40"; schedule: Monthly; browse policy:
Monthly;
retention policy: Monthly

create type: NSR group; name: Monthly MSSQL; autostart:
Enabled;
start time: "22:00"; schedule: Monthly; browse policy:
Monthly;
retention policy: Monthly

http://nsrd.info

© Preston de Guise, 2015 134

create type: NSR pool; name: Daily; enabled: Yes;
pool type: Backup; groups: Daily, Daily MSSQL;
auto media verify: Yes; recycle to other pools: Yes;
recycle from other pools: Yes; retention policy: Daily

create type: NSR pool; name: Monthly; enabled: Yes;
pool type: Backup; groups: Monthly, Monthly MSSQL;
auto media verify: Yes; recycle to other pools: Yes;
recycle from other pools: Yes; retention policy: Monthly

create type: NSR pool; name: Daily Clone; enabled: Yes;
pool type: Backup Clone; store index entries: No;
auto media verify: Yes; recycle to other pools: Yes;
recycle from other pools: Yes; retention policy: Daily

create type: NSR pool; name: Monthly Clone; enabled: Yes;
pool type: Backup Clone; store index entries: No;
auto media verify: Yes; recycle to other pools: Yes;
recycle from other pools: Yes; retention policy: Monthly

. type: NSR group; name: Daily
update clones: Yes; clone pool: Daily Clone
. type: NSR group; name: Daily MSSQL
update clones: Yes; clone pool: Daily Clone

. type: NSR group; name: Monthly;
update clones: Yes; clone pool: Monthly Clone
. type: NSR group; name: Monthly MSSQL
update clones: Yes; clone pool: Monthly Clone

Note that you can download a zip file with both the Windows and Unix versions of the above script
from:

http://nsrd.info/turbocharged /create_resources.zip

To run it, execute:

nsradmin -i create-resources.nsri

This will execute as follows:

http://nsrd.info

© Preston de Guise, 2015 135

Figure 167: Bulk creation of resources to be used for scripting

The execution will be almost entirely the same on a Windows NetWorker server:

Figure 168: Bulk creation of resources on Windows

15.14.3 A client creation script
Having tested out a basic script, and created the basic configuration that will be used, we can now
create a script that adds clients to our NetWorker environment.

For Linux/Unix, this script might resemble the following:

#!/usr/bin/perl -w

use strict;
my $hostname = "tara";

http://nsrd.info

© Preston de Guise, 2015 136

print "Enter new client name: ";
my $newClient = <>;
chomp $newClient;

print "Should new client have MSSQL module enabled? (y/n) ";
my $module = <>;
chomp $module;

if (open(NEWCL,">new-client-$$.nsri")) {
 print NEWCL "create type: NSR client; name:
$newClient;\n";
 print NEWCL "group: Daily, Monthly; browse policy:
Monthly;\n";
 print NEWCL "retention policy: Monthly; parallelism:
1\n";
 if ($module eq "y") {
 print NEWCL "create type: NSR client; name:
$newClient;\n";
 print NEWCL "group: Daily MSSQL, Monthly
MSSQL;\n";
 print NEWCL "browse policy: Monthly; retention
policy: Monthly;\n";
 print NEWCL "backup command: nsrsqlsv.exe -s
$server;\n";
 print NEWCL "save set: \"MSSQL:\"\n";
 }
 close(NEWCL);
 system("nsradmin -s $hostname -i new-client-$$.nsri");
 unlink("new-client-$$.nsri");
} else {
 die "Could not create file new-client-$$.nsri\n";
}

Change the hostname entry in the line “my $hostname = …” to the name of your lab NetWorker
server.

Script sessions would resemble the following:

Figure 169: New client script being executed on Linux

In the first execution, two client resources were created – the first for the filesystem backup, and
the second for the SQL server backup. For the second session, only a filesystem backup instance
was created.

The Windows batch file version of the script will look like the following:

@echo off
set server=win01

echo Creating a new client
set /p name="Enter new client name: "

http://nsrd.info

© Preston de Guise, 2015 137

set /p module="Should new client have MSSQL module enabled?
(y/n) "

> command.nsri echo create type: NSR client; name: %name%;
>> command.nsri echo group: Daily, Monthly;
>> command.nsri echo browse policy: Monthly;
>> command.nsri echo retention policy: Monthly;
>> command.nsri echo parallelism: 1

if %module%==y (
>> command.nsri echo create type: NSR client; name: %name%;
>> command.nsri echo group: Daily MSSQL, Monthly MSSQL;
>> command.nsri echo browse policy: Monthly;
>> command.nsri echo retention policy: Monthly;
>> command.nsri echo backup command: nsrsqlsv.exe -s
%server%;
>> command.nsri echo save set: "MSSQL:"
)

nsradmin -s %server% -i command.nsri
del command.nsri

When entering the script, be sure to change the server name (“set server=win01”) to the name of
your NetWorker lab server. With the script created and saved as “create-client.bat”, sample run
session results are as follows:

Figure 170: Executing the create-client script on Windows

15.15 Connecting to Client Services
As mentioned in 11.1.2 (Aside – Auto-rendered Log Files), nsradmin can be used to the NetWorker
client service as well. The syntax for this was:

nsradmin -s clientName -p nsrexec

(Note that you can use the program ‘nsrexec’ or ‘nsrexecd’ here.)

Once connected, you can view the NSRLA resource to view various items of software and operating
system configuration for the client. For instance:

http://nsrd.info

© Preston de Guise, 2015 138

Figure 171: Using nsradmin to view the NSRLA resource on a client

Pertinent information offered by the client includes:

• Client IP addresses
• Number of CPUs
• Amount of occupied space on the client (“MB used”)
• Operating system version
• NetWorker client version
• Authorised administrators
• Allowed authentication types

Another area this can come in handy is fixing NSR peer information errors in NetWorker. Whenever
a NetWorker host connects to another NetWorker host for the first time, the two hosts exchange
certificates – these are typically auto-generated the first time the client service is started on a host
(regardless of its function). The certificates are effectively used as a means of authorisation and to
try to prevent impersonation scenarios.

However, sometimes the certificates might be regenerated. This can happen when an operating
system is rebuilt, and sometimes even if the NetWorker client software is uninstalled then
reinstalled.

The peer information that any NetWorker host collects about other hosts it has communicated
with can be viewed by running nsradmin against the client services, then running the command:

nsradmin> print type: NSR peer information

For instance, on the lab NetWorker server used for this section, the peer information reflects only a
single Windows client that was backed up:

http://nsrd.info

© Preston de Guise, 2015 139

Figure 172: Viewing the peer certificate information for a client

In circumstances where a NetWorker client reports the peer information for the server is invalid,
or where the server reports the peer information for a client is invalid, the information logged will
resemble the following:

89879 04/11/2014 11:44:06 5 12 10 240222208 58 0 hyperion
nsrexecd GSS critical An authentication request from
tara.pmdg.lab was denied. The 'NSR peer information' provided
did not match the one stored by hyperion. To accept this
request, delete the 'NSR peer information' resource with the
following attributes from hyperion's NSRLA database: name:
tara.pmdg.lab; NW instance ID: 8d92806e-00000004-8ec98419-
54575478-0001b3a0-02efe8cc; peer hostname: tara.pmdg.lab

When this occurs, the process for rectifying it is as follows:

1. Use nsradmin to connect to the client services of the host referenced in the error log as
having incorrect peer information stored (in the above message, ‘hyperion’).

2. Delete the peer information for the host referenced as not matching (in this case,
‘tara.pmdg.lab’).

For the above scenario, this would be executed as follows27:

nsradmin -s hyperion -p nsrexec
nsradmin> delete type: NSR peer information; name:
tara.pmdg.lab

15.16 Using regular expressions in nsradmin
Regular expressions in nsradmin are primarily limited to the use of the standard asterisk wild card.
However, even that can result in selecting a large number of resources, so be very careful when
using wild cards in nsradmin to carefully confirm the resources selected by a regular expression
match your intent.

Starting with a basic example – we should have some testn clients defined by practicing with the
client-create script written previously. We can see what clients we’ve created as follows:

nsradmin> option regexp
…
nsradmin> show name:; backup command:; save set:; group:
nsradmin> print type: NSR client; name: test*

For example:

27 It would likely be required to execute this from the host called ‘hyperion’.

http://nsrd.info

© Preston de Guise, 2015 140

Figure 173: Using regular expressions to show clients in nsradmin

In order to use regular expressions, you must invoke first turn them on using the “option regexp”
setting. Otherwise, NetWorker will interpret what you type literally:

Figure 174: How NetWorker interprets regular expressions when it isn't expecting them

Equally, the wild card can only be used at the end of an expression, not partway through it. For
instance, searching for a client resources of the name *7 will not work:

http://nsrd.info

© Preston de Guise, 2015 141

Figure 175: Limitations with regular expressions in nsradmin

15.17 Offline mode
All the examples presented so far for nsradmin make use of it connecting to an actual server, via
commands such as:

nsradmin

and

C:\> nsradmin -s serverName

We can however run it in offline mode against a resource configuration database.

Under no circumstances should you
ever run nsradmin in offline mode
against a running NetWorker server’s
configuration database. Doing so
could result in irreparable damage
necessitating a bootstrap recovery.

To look at offline mode, we’ll shutdown NetWorker on the lab server. For Linux/Unix servers, this
will be by running the commands:

/etc/init.d/gst stop
/etc/init.d/networker stop

For Windows, you can do it from the services control snap-in, or you can just instead run at the
command prompt:

C:\> net stop nsrexecd /y

Once the services are stopped, you can run nsradmin against the resource database. This is
achieved using the syntax:

nsradmin -d /path/to/nsrdb

Note that on Unix/Linux systems, nsradmin will often let you get away with using a relative
directory path, but in Windows an absolute path is more often required.

An example session on Linux might resemble the following:

http://nsrd.info

© Preston de Guise, 2015 142

Figure 176: Running nsradmin in offline mode on Linux/Unix

On Windows, the process will be reasonably similar:

Figure 177: Running nsradmin in offline mode on Windows

That’s all for offline mode, for one simple reason: many of the input validation and safety checks
performed by the NetWorker server when you work with nsradmin aren’t performed when you’re
operating in offline mode. Therefore, even if you’re a power user for nsradmin, you should
generally only work in offline mode against a resource database if your support provider gives you
specific instructions to do so.

http://nsrd.info

© Preston de Guise, 2015 143

Maintenance

16 Introduction
NetWorker is mostly self-maintaining. When you restart the NetWorker server, for instance, it runs
a basic check against the media database and the client file indices. Additionally, it routinely runs
(daily) media database/index cross-referencing activities essential to making savesets, and by
extension, the volumes they may be on, recyclable.

There are two elements in particular for NetWorker maintenance that you should become familiar
with, however:

• Specific health-check and processing commands
• Log file control

The activities described in this chapter shouldn’t be seen as a complete replacement to whatever
health check activities you’re already performing, or instructions you may receive from your
support provider or the EMC support website. They can, however, be a useful adjunct.

http://nsrd.info

© Preston de Guise, 2015 144

17 Health check commands
Unless otherwise stated, all health check commands are run on a NetWorker server only.

CAUTION – Lab Exercises

All of the exercises described in this chapter should only be attempted on lab servers until
you are confident with what you are doing. Depending on the state of your existing
NetWorker media database and indices, these commands can result in backups becoming
recyclable and purged from a system, or index records becoming unavailable. Use at your
own discretion.

17.1 Media Database Check
The nsrck utility can be used to perform both media database and index checks. We’ll start with the
simplest check it can perform – the rebuild of the media database.

The media database check/rebuild is achieved by running:

nsrck -m

On older versions of NetWorker, this would provide no output to standard out if there were no
issues encountered. From NetWorker 8.2 onwards, this reports:

Figure 178: Standard nsrck output, starting in NetWorker 8.2

The nsrck -m command can perform cumulative repair operations on a media database. If for
instance it reports an error, running it another one or two times can result in the error being
repaired (or eliminated).

Depending on the size of your media database, this command can return almost instantly, or it can
take a few minutes to execute. While it may not appear from the output to be doing much, if we
check the daemon.raw file (via nsr_render_log), the following is reported during an nsrck -m
operation:

Figure 179: NetWorker daemon log content from running nsrck –m

You should only need to run the nsrck -m command before NetWorker upgrades or when directed
to by your support provider. Typically you’d be directed to do this when there are errors or issues
consistent with problems in either the media database or the client file indices.

The other command you can use to check the status of the media database is the nsrls command:

nsrls -m

This will output database size and record count details (as well as location) for the media database:

http://nsrd.info

© Preston de Guise, 2015 145

Figure 180: Using the nsrls command against the media database

The usage scenarios for nsrls -m are the same as for nsrck -m.

17.2 Index Checks
While the previous section covered using nsrck and nsrls against the media database, both will
equally run against the client file indices as well. In fact, both default to running against client file
indices.

For instance, nsrck when run with no arguments will do a level-1 index check, the same as you get
when you start the NetWorker server:

nsrck

Figure 181: Performing a basic index check

Equally for nsrls:

http://nsrd.info

© Preston de Guise, 2015 146

nsrls

Figure 182: Performing a basic client file index listing/summary

The index listing via nsrls reports the number of records in and current size of each index. Note for
all modern NetWorker servers (v7.0 onwards), the index will be reported as “100% utilized”. This is
normal28.

The nsrck command actually supports a variety of index check levels. These are accessed via nsrck
–Lx where x is a number between 1 and 7. You’ve already seen the output of a level-1 execution:
that’s the default when no arguments are supplied.

While all 7 levels of index checking do slightly different things, the levels you’ll most likely invoke
without direction from your support provider are:

Table 5: Standard nsrck check levels

Index Check Level Description
-L1 Invoked by default if running nsrck without arguments. Basic validation

only.
-L3 Cross-references the client file indices against the media database. Where

a client file index entry is discovered that has no media database entries
(i.e., savesets), the client file index entry is removed.

-L6 Completely rebuild the client file indices. This can clear almost all
corruption from an index.

-L7 Rebuild the client file indices by recovering them from backup.

For level based checks, nsrck can be invoked against either all clients, or a single nominated client,
using the syntax:

nsrck -Lx [client]

Where:

• -Lx is the level of check to run

28 Older indices had a different format that allowed for records in an index to be marked as expired, and
would be removed from the file on a media/index cross-reference check. This is no longer required as
separate index files are stored for each saveset and are automatically removed as required.

http://nsrd.info

© Preston de Guise, 2015 147

• Client (optional) is the specific client to run the check against.

For instance, to perform a level 3 check (index/media database cross reference) against all clients,
the syntax would be:

nsrck -L3

For example:

Figure 183: Executing an nsrck -L3

To actually rebuild the index for a specific client, inline, you would use the syntax:

nsrck -L6 clientName

For example:

nsrck -L6 faraway

Figure 184: Performing an index rebuild against a client file index

An actual index recovery will look a little different, since nsrck manages the background recovery
task for you. For example:

nsrck -L7 faraway

Figure 185: Performing an index recovery

Note that like any normal recovery, NetWorker will recover all components necessary – for index
backups, this will be the most recent full and the most recent level-9 backup performed of the
index.

Examples of when you’d run these sorts of nsrck commands are:

http://nsrd.info

© Preston de Guise, 2015 148

Table 6: Scenarios for running nsrck index rebuilds

Index Check Level When you’d run…
-L1 Automatically run every time you start NetWorker.
-L3 When advised by support or in scenarios where NetWorker is reporting

index problems when attempting a recovery.
-L6 When advised by support or in scenarios where NetWorker is reporting

index problems when attempting a recovery and the –L3 option has not
solved the problem.

-L7 When advised by support, or in scenarios where you need to merge in
older indices, or when you’re performing a disaster recovery of either the
NetWorker server or a specific client’s indices.

Note in the -L7 description above the reference to merging in old indices. The syntax for this type
of index recovery is:

nsrck -t date -L7 clientName

Where date is a valid NetWorker date. This will retrieve older index backups from the nominated
time and merge them with the current index, effectively allowing you to retrieve browseable index
details for older, non-browseable backups, or backups whose browse details have been mistakenly
purged from the client file index.

17.3 Index Management
There is another utility you should be aware of, but careful as to when or if you use it, and that’s
nsrim -X. In normal operations it should be rare indeed for you to have to run it.

The nsrim utility is used to perform NetWorker index management – it’s the utility used by
NetWorker to expire old backups then invoke nsrck as required to clean up the client file indices,
before (if possible) marking volumes as recyclable.

You should never, ever run nsrim against a server where there are backup, clone or staging
activities running on a system unless specifically advised by your support provider.

The complete output of nsrim -X is quite comprehensive and is shown below in trimmed form
from a lab server:

[root@orilla ~]# nsrim -X
88411:nsrim: Checking for invalid volumes
86069:nsrim: Processing 7 clients
faraway:C:\, 5 browsable cycle(s)
1820371 browsable files of 1820371 total, 61 GB recoverable
of 61 GB total

faraway:D:\, 5 browsable cycle(s)
21974 browsable files of 21974 total, 9753 MB recoverable of
9753 MB total

…the above output is repeated in style for each
client:saveset combination…

86067:nsrim: Crosschecking indexes for 4 clients.
Cross checking client(s):
 faraway
 hyperion
 mondas
 orilla.turbamentis.int
nsrck: checking index for 'faraway'

http://nsrd.info

© Preston de Guise, 2015 149

nsrck: /nsr/index/faraway contains 1898617 records occupying
230 MB
nsrck: checking index for 'hyperion'
nsrck: /nsr/index/hyperion contains 2348417 records occupying
459 MB
nsrck: checking index for 'mondas'
nsrck: /nsr/index/mondas contains 523819 records occupying 80
MB
nsrck: checking index for 'orilla.turbamentis.int'
nsrck: /nsr/index/orilla.turbamentis.int contains 2184695
records occupying 408 MB
nsrck: Completed checking 4 client(s)
86068:nsrim: Managing 5 volumes.
DAS.01: 530 GB used, 42 save sets, appendable, 28
browsable save sets, 14 recoverable save sets
DAS.02: 0 KB used, 0 save sets, appendable
iSCSI.01: 1992 GB used, 271 save sets, appendable, 182
browsable save sets, 88 recoverable save sets, 1 recyclable
save sets
iSCSI_SDFS.01: 53 GB used, 146 save sets, appendable, 101
browsable save sets, 45 recoverable save sets
iSCSI_SDFS.02: 20 GB used, 18 save sets, appendable, 16
browsable save sets, 2 recoverable save sets
86073:nsrim: Compressing media database.

Typically you should only run nsrim -X when advised to by your support provider, but one
example where you may have to run it is when you’re using tapes and you need to trigger a
recycling check to determine if there is any media eligible for recycling. NetWorker upgrade
instructions will also require this utility to be executed at a suitable point in the process, too.

18 Client Connectivity Checking
Introduced in the NetWorker 8.x series has been a new function in the nsradmin utility for checking
configured clients. This can be an absolute boon to administrators trying to diagnose connectivity
issues within their environment.

This client check will, for each client targeted, gather the following information:

• Client name
• Client ID
• Client FQDN
• IP Address(es)
• Reverse Lookup Results
• Client port connectivity check results

The syntax for this new function is:

nsradmin -C query

Where query is any valid NetWorker query that identifies clients. (The goal over time is to allow
other types of checks to be performed for a variety of NetWorker resources, but at the moment the
first function available – arguably the most important one – is for client checking.)

If you wanted to check all clients in your environment, the syntax might resemble the following:

nsradmin -C "type: NSR client"

http://nsrd.info

© Preston de Guise, 2015 150

However, if you’ve got a lot of clients, you might want to restrict this a little – such as by group the
client belongs to. So to query all the clients that belong to a group called Servers, for instance, the
command might resemble the following:

[root@orilla ~]# nsradmin -C "type: NSR client; group: Servers"

Validate "NSR client" resources

Synopsis: For each NSR client resource in orilla.turbamentis.int's NSR
database, verify their 'name', 'aliases', 'storage nodes' and 'server
network interface' attributes have properly configured DNS entries then
attempt to connect to each address on port 7938.

 Client 1 of 3
 Name: faraway
 Client ID: 76235b01-00000004-54584ba8-54597338-002cb3a0-02efe8cc

 Canonical hostname: faraway.turbamentis.int
 IP Address: 192.168.100.7 (0.000 sec)
 Host Name (reverse lookup): faraway.turbamentis.int (0.000 sec)
 Ping (port 7938): Success (0.000 sec)

 Alias: faraway.turbamentis.int

 Canonical hostname: faraway.turbamentis.int
 IP Address: 192.168.100.7 (0.000 sec)
 Host Name (reverse lookup): faraway.turbamentis.int (0.000
sec)
 Ping (port 7938): Success (0.000 sec)

 Client 2 of 3
 Name: mondas
 Client ID: 147f6a46-00000004-5457fce2-5457fce1-0016b3a0-02efe8cc

 Canonical hostname: mondas.turbamentis.int
 IP Address: 192.168.100.99 (0.000 sec)
 Host Name (reverse lookup): mondas.turbamentis.int (0.000 sec)
 Ping (port 7938): Success (0.000 sec)

 Alias: mondas.turbamentis.int

 Canonical hostname: mondas.turbamentis.int
 IP Address: 192.168.100.99 (0.000 sec)
 Host Name (reverse lookup): mondas.turbamentis.int (0.000
sec)
 Ping (port 7938): Success (0.000 sec)

 Client 3 of 3
 Name: orilla.turbamentis.int
 Client ID: fd071e91-00000004-5457547a-54575479-0001b3a0-02efe8cc

 Canonical hostname: orilla.turbamentis.int
 IP Address: 192.168.100.4 (0.000 sec)
 Host Name (reverse lookup): orilla.turbamentis.int (0.000 sec)
 Ping (port 7938): Success (0.000 sec)

 Alias: orilla

 Canonical hostname: orilla.turbamentis.int
 IP Address: 192.168.100.4 (0.000 sec)
 Host Name (reverse lookup): orilla.turbamentis.int (0.000
sec)
 Ping (port 7938): Success (0.000 sec)

Summary:

NSR client resources checked: 3

Names checked: 3
 Forward lookup errors: 0
 Reverse lookup errors: 0
 Ping errors: 0

Aliases checked: 3

http://nsrd.info

© Preston de Guise, 2015 151

 Forward lookup errors: 0
 Reverse lookup errors: 0
 Ping errors: 0

Server Network Interfaces checked: 0
 Forward lookup errors: 0
 Reverse lookup errors: 0
 Ping errors: 0

Storage Nodes checked: 0
 Forward lookup errors: 0
 Reverse lookup errors: 0
 Ping errors: 0

Total errors: 0

Even if you ignore most of the other functionality of nsradmin, this is an option you should
definitely familiarise yourself with.

19 Using dbgcommand
The dbgcommand was introduced in the NetWorker 7.x tree (formally introduced into the
NetWorker distribution in v7.4, previously supplied by support when required), and is used to put
specific NetWorker services into debug mode without needing to restart NetWorker services.

Additionally, the dbgcommand has several nifty options that can make problem diagnosis easier to
perform.

CAUTION – Use in lab first

The dbgcommand while extremely useful can also cause problems if used incorrectly. You are
strongly advised to ensure you thoroughly familiarise yourself with it in a lab environment before
using it in a production environment, and for the most part limit its use in a production
environment to specific support situations.

Invoked without any arguments, dbgcommand will produce output such as the following:

Figure 186: Default output of dbgcommand

http://nsrd.info

© Preston de Guise, 2015 152

19.1 Correlating devices to running daemons
Particularly in a tape-based environment, it’s useful to be able to cross reference a running nsrmmd
process to the device it is managing. For example, if we look at a ps output for nsrmmd processes, it
will resemble the following:

Figure 187: ps output for nsrmmd processes

The dbgcommand makes the cross referencing considerably easier. This is done by executing:

dbgcommand -p nsrdPID PrintDevInfo

Where nsrdPID is the process ID for the nsrd executable (or nsrd.exe on a Windows NetWorker
server29). This might resemble the following:

Figure 188: Generating device information using dbgcommand

You’ll note if you run this command that it doesn’t produce any terminal output – this is because
the information generated is written to the daemon.raw file.

The output generated by the dbgcommand is too long to include in this document, but for each
device a reasonably substantial amount of information is produced. If the device is active or
permanent nsrmmds are assigned, you’ll see included in the output information such as the
following:

device squeezebox_Squeeze01 {
 d_mmd_list :
 count = 1
 mmd_number = 340998152
 d_iface = DEV_IF_DD_IP
 d_dedicated_snode = <NULL>
 d_pid = 0
 d_nsrmm_number = 0
 d_mode = M_RW
 rm_soft = RDS_ENABLED

29 This can be determined through a variety of means in Windows – in the simplest form, just adding the PID
column to the Activity Monitor process display.

http://nsrd.info

© Preston de Guise, 2015 153

 d_read_only = <FALSE>
 d_jbdev = <FALSE>
 d_device = squeezebox_Squeeze01
 d_family = disk
…

Included in the output is the list of nsrmmd processes based on the internal NetWorker reference
number that are managing or working on the device. In this case, that’s 340998152, which has been
underlined in the output above. Looking further through the daemon.raw output you’ll see a
section for this specific mmd that resembles the following:

mmd #340998152 {
 mm_flags = 0
 mm_number = 340998152
 mm_active = 0
 mm_operation = RM_INIT
 mm_idle_time = Mon Apr 6 10:45:56 GMT+1000 2015
 mm_mode = MM_MODE_INIT
 mm_pid = 17329
 mm_volume =
 mm_device = <NULL>
 mm_pool =
 mm_machname = centaur
 mm_control = MM_READY
 mm_auth {
 mm_auth_session = 0
 mm_auth_clone_partner = 0
 mm_auth_clone_mount_id = 0
 mm_auth_mode = MM_MODE_INIT
 mm_auth_timeout = 0
 mm_auth_setup_timeout = 0
 }
 mm_minmode = _DONE
 mm_save_lockout = 0
 mm_ndmp = <FALSE>
 mm_hard_limit = 0
 mm_is_32bit = <FALSE>
 mm_agent_pid = 0
 mm_b2d_dynamic = <FALSE>
 mm_b2d_device = <NULL>
 reservations {
 }
}

Included in that output is the process ID for the nsrmmd process in question – in this case, 17329,
and if we do a process listing searching for that specific process ID, we’ll find the nsrmmd in
question:

[root@centaur ~]# ps -eaf | grep 17329
root 17329 2574 0 Mar29 ? 00:00:14
/usr/sbin/nsrmmd -b 2 -N 340998145 -n 8 -s centaur -t centaur

In older environments that had tape libraries, this cross-referencing was particularly handy to
NetWorker administrators who encountered a significant error on a single tape and wanted to try
to kill that process and release a tape drive without being forced to restart the NetWorker services.
While the results might sometimes be variable, it at least gave an administrator a ‘fighting chance’
to recover from a significant low-level SCSI error without having to completely restart the
NetWorker services.

http://nsrd.info

© Preston de Guise, 2015 154

19.2 Flushing NetWorker’s Internal DNS Cache
In order to speed up various name resolution activities, NetWorker typically maintains an internal
DNS cache of hostnames it has validated. Occasionally this DNS cache may become out of sync
with your main DNS – though this typically won’t happen unless there are DNS errors or
hosts/DNS conflicts.

In this scenario, rather than restarting the NetWorker services, you can use dbgcommand to flush
that internal cache using the command:

dbgcommand -p nsrdPID FlushDnsCache

Where nsrdPID is the process ID for the NetWorker core service, nsrd/nsrd.exe.

As per the PrintDevInfo command, this will produce no discernible output to the terminal it is run
on:

Figure 189: Using the FlushDnsCache option for dbgcommand

However, there will be a notice generated in the daemon.raw file that resembles the following:

Changing FlushDnsCache of process (id 2297) from 0 to 1

(You may note that like the daemon.raw content generated for the PrintDevInfo command, this
content is not written in a way that requires rendering.)

19.3 Turning on Debug Mode
Occasionally EMC support may request you use the dbgcommand utility to actually turn on debug
mode for a specific NetWorker process. While this will usually be the nsrd/nsrd.exe process, it can
conceivably be just about any running NetWorker process in your environment, depending on the
nature of the problem and what diagnostic work has already been run.

The syntax for this option is:

dbgcommand -p pid Debug=X

Where pid is the process ID to be changed and X is a number between 0 and 99. As you might
imagine, a value of 0 turns debug mode off, and you should always be certain to turn debug mode
off as soon as you’ve gathered the information you need, otherwise you may encounter
considerable log growth. While there are a variety of different debug numbers you may be called
on to use, the most common two are usually 3 and 9.

For example, putting the NetWorker core service, nsrd into debug mode level 9, might be done as
follows:

http://nsrd.info

© Preston de Guise, 2015 155

Figure 190: Turning on debug mode level 9

Whenever a daemon has its debug level changed, this is reflected in the daemon.raw file:

Changing Debug level of process (id 2297) from 0 to 9

Immediately after debug mode has been turned on, the NetWorker services will start generating
potentially a lot more messages into the target log file(s). For example, running an nsr_render_log
immediately after turning on debug mode level 9 might reveal logged output such as the following:

Figure 191: Debug log information

For the most part, debug information is entirely intended to be read by an EMC support engineer,
but can in certain circumstances help to identify scenarios where processes are looping on name
resolution attempts, etc.

When ready to exit debug mode for logging, the command might resemble the following:

Figure 192: Turning debug mode off

20 Log Maintenance
NetWorker can, at times, produce a lot of logging information, and the amount of information
produced will increase as the number of backups you perform increases.

The bulk of logs produced by NetWorker will, by and large, reside on the NetWorker server within
the logs directory:

• Unix/Linux default path: /nsr/logs

http://nsrd.info

© Preston de Guise, 2015 156

• Windows default path: C:\Program Files\EMC NetWorker\nsr\logs

However, other common location for log files in a NetWorker environment are:

• The log directory (per the above) on any client
• The ‘applogs’ directory on any client running a NetWorker module
• The ‘logs’ directory within the NetWorker Management Console directory

NetWorker will routinely cycle the daemon.raw logs, starting a new log and renaming the old log
to indicate the last dated event covered, but other logs are not always processed. It’s very much
worthwhile keeping an eye on the sizes of these logs, though it’s arguably the case that no system
should be so tight on space that you have to do this on a daily, weekly or perhaps even monthly
basis.

Within the NetWorker server logs directory, log files that aren’t rotated/cycled are the messages file
and the rap.log file. On most Unix systems now, the messages file will be blank, as NetWorker will
redirect messages to the system messages file. (However, this file on older servers could grow to
huge sizes.)

The most important thing to keep in mind with most NetWorker logs is you should preserve them,
even if you compress them after they’ve been rotated/cycled. This allows easier retrieval at a later
time from backup any logs that correspond to backups you may want to recover from.

Logs should also not be rotated/cycled while the NetWorker server is running. For instance, if we
use the fuser command on a Linux NetWorker server to check for process IDs accessing the
/nsr/logs/rap.log file, we see it’s in use by the NetWorker server:

Figure 193: Log file in use

Were you to say, delete a rap.log file for being too large, or rename to it something like
rap_001_old.log while the server was running, NetWorker would likely lose connection to the rap.log
file while still thinking it had an open file handle, and information that would have been logged to
the file would not be. (This isn’t a NetWorker limitation as such but a user error based on how most
operating systems deal with open file handles.)

http://nsrd.info

© Preston de Guise, 2015 157

Backup Control

21 Introduction
This backup control section is the main area where we’ll be making use of the NetWorker
Management Console. Not everything has to be done at the command line to exert expert control
over NetWorker, and controlling the finer points of how backups are executed can be easier and
more efficient using NMC.

http://nsrd.info

© Preston de Guise, 2015 158

22 Pre and Post Processing Commands
22.1 Advantages of pre and post processing
Sometimes it’s not possible to achieve your backup as a simple filesystem or database backup.
Consider the following scenarios:

1. A network switch can generate a loadable dump of its configuration but obviously can’t
have the NetWorker client software on it.

2. A DMZ host can generate a recoverable dump of its key configuration details but security
requirements do not allow backup software to be installed on the host.

3. A full end-of-year backup for a database server (that is normally backed up hot) must be
performed with the database shutdown.

In each of these scenarios, pre and post processing can conceivably be used to achieve the backup
result:

1. If the network switch allows ssh, a NetWorker client backup might start by issuing an ssh
command to the switch to dump its configuration. This output would then be saved to the
NetWorker client as a text file and picked up as part of the standard filesystem backup.

2. Similarly to the network switch, the security team may allow the DMZ host to have a single
nominated host from within the corporate environment connect to it. This host could have
the NetWorker client software installed. When the backup is executed on the client, the
client reaches out to the DMZ host, retrieves a previously executed backup, saves that
backup to the local filesystem and picks it up as part of the NetWorker backup.

3. The end-of-year database backup might first shutdown the database, then perform a
standard filesystem backup, and then restart the database at the conclusion of the backup.

22.2 savepnpc
For a very long time, NetWorker’s support of pre and post processing was via a mechanism
referred to as savepnpc.

Pre and post processing was achieved by changing the backup command for a client to savepnpc,
which would subsequently generate a groupname.res file on the NetWorker client the next time its
backup was run. This groupname.res file would have the following content:

precmd: "echo hello";
pstcmd: "echo bye", "/bin/sleep 5";
timeout: "12:00:00";
abort precmd with group: No;

By now the layout of this file should look fairly familiar - it's basically a NetWorker resource file,
but in this case just a standalone single-purpose resource. If you didn’t want to wait for the file to
be created, you could create it yourself using the format above, preserving the formatting exactly.

Once the file was created, you’d edit the file and insert your own pre commands or post commands
as required.

While savepnpc worked, it was somewhat fiddly at times, and it also only worked for filesystem
backups. If clients using a NetWorker module required pre and post commands, those pre and post
commands would need to be handled by the module.

Because savepnpc isn’t required any more for pre and post command execution from NetWorker
8.2 onwards, we won’t be dealing with this in the manual.

http://nsrd.info

© Preston de Guise, 2015 159

22.3 The new order
Starting in NetWorker 8.2, the NetWorker client definition now allows for the direct specification
of pre and post commands within the client definition:

Figure 194: Specifying pre and/or post commands in NetWorker 8.2+

The following rules apply to pre and post commands created for a client:

1. The name of the command must start with ‘nsr’ or ‘save’.
2. The command must be specified as a plain base filename rather than a path.
3. The command must exist in a default directory path accessible by the NetWorker client.

(For least fuss, this should be in the actual NetWorker binary directory.)

For instance, consider scenario 2 in the introduction – that being a DMZ host where the
NetWorker client software can’t be installed, but ssh to the host is permitted.

In this scenario, we might configure a client called ‘mondas’ to automatically retrieve the dump file
generated on the DMZ host as its pre command:

http://nsrd.info

© Preston de Guise, 2015 160

Figure 195: Configuring a client pre command

Assuming ssh keys have been exchanged between mondas and the DMZ host (which we’ll refer to
as cerberus in this example), the ‘nsr_retrieve_cerberus.sh’ file might look like the following:

#!/bin/bash

/usr/bin/scp root@cerberus:/.backups/latest.zip
/cerberus/dmz_backup.zip

The nsr_retrieve_cerberus.sh file has been placed in the /usr/sbin directory on the client mondas.

After a backup has completed for mondas, assuming ssh has been configured correctly, the file
should have been successfully transferred and backed up. For instance, the following shows a
directory listing in the /cerberus directory on mondas first before, then after the backup:

http://nsrd.info

© Preston de Guise, 2015 161

Figure 196: Results of pre command

We can further verified this was copied before the backup by executing a recovery for it:

Figure 197: Recovering a file transferred as part of a pre command

Obviously it’s not desirable to perform a recovery every time a pre command backup is executed in
NetWorker in order to confirm files or data generated by that pre-command were backed up.
NetWorker will therefore rely on the exit status of the pre command to report whether or not the
pre command was executed successfully, and this will be reported in the savegroup completion
output:

http://nsrd.info

© Preston de Guise, 2015 162

Figure 198: Savegroup completion report showing successful pre command execution

When using the pre command option in NetWorker, NetWorker will not run the backup command
if the pre command returns unsuccessfully. For instance, if we change the shell script used to scp
files across from cerberus to have an incorrect filename, the backup fails almost immediately and
gives the following error message as part of the savegroup completion:

Figure 199: Pre command failure

By the way – if you’re worried from the above output that NetWorker executes the pre command
for each saveset – don’t! NetWorker only executes the pre command once.

Equally, NetWorker will fail the backup if a post command is specified and cannot be found or
executed successfully:

Figure 200: Post command failure

http://nsrd.info

© Preston de Guise, 2015 163

23 NetWorker Directives
23.1 Overview
A directive, in NetWorker, is a means of exerting granular control over what gets backed up, and
how it gets backed up, at the filesystem level. Directives typically do not apply for module backups
or image level virtual machine backups (via VBA, VADP or VCB).

We’ll start by looking at one of the default directives defined within NetWorker, Unix Standard
Directives. This has the following content:

<< / >>
 skip: tmp_mnt
 +skip: core
<< /tmp >>
 skip: .?* *
<< /export/swap >>
 swapasm: .
<< /nsr >>
 allow
<< /nsr/logs >>
 logasm: .
<< /var >>
 logasm: .
<< /usr/adm >>
 logasm: .
<< /usr/spool >>
 logasm: .
<< /usr/spool/mail >>
 mailasm: .
<< /usr/mail >>
 mailasm: .

You can tell immediately by this that there is a particular format for directives, being:

<< path >>
[+]instruction: pattern

For instance, the Unix Standard Directives above cite the following:

<< /tmp >>
skip: .?* *

This means nothing within the /tmp directory will be backed up to any host for which the Unix
Standard Directives directive has been applied to it.

The example directives I’ve shown has two skips in the first section, that being:

<< / >>
skip: tmp_mnt
+skip: core

The plus sign significantly alters the interpretation of the ‘skip’ statement:

• For the first statement, “skip: tmp_mnt”, NetWorker is being instructed to skip anything in
the root directory of a server called “tmp_mnt”.

• For the second statement, “+skip: core”, NetWorker is being instructed to skip anything in
the root directory and all of its subdirectories called “core”.

You may note in both of those scenarios I said “anything” rather than “any file”. Directives apply to
anything that matches, file or directory. For this reason, you have to be particularly careful about
how and where you apply directives. For instance, applying the “Unix Standard Directives” on a

http://nsrd.info

© Preston de Guise, 2015 164

Linux host may seem acceptable unless you consider that the Linux kernel source (/usr/src/kernels)
is just full of directories called core:

Figure 201: 'core' directories on Linux servers

If the Unix Standard Directives were to be applied to a Linux server, a noticeable chunk of the kernel
source directory structure would not be backed up.

In NetWorker, the instruction part of the directive (i.e., “what to do”) is referred to as an ASM – an
Application Specific Module. These should not be confused with NetWorker Application Modules.
They in fact refer to modules within the uasm utility, which is the base level command called by the
NetWorker save process in order to do a filesystem backup.

Particularly pertinent asms that are available for use within directives include30:

Table 7: Most common options in directives

ASM Purpose
always Always back up a file, regardless of whether it has changed or not.
atimeasm When backing up a file, do not change the access time for the file.
compressasm Perform a basic compression on the data.
logasm

Used against log files that may be backed up; this prevents NetWorker
reporting any changes to the file during the backup process

mailasm Useful for Unix/Linux servers only, this performs basic mail utility file
locking for default mail systems.

null Do not backup the patterns that match but equally don’t ‘blank out’ the
parent directory in the indices if nothing is going to be backed up.

skip Do not backup patterns that match, and do not include the parent directory in
the indices if nothing is going to be backed up.

30 These are not intended to be comprehensive, but simply to cite the ones more commonly used.

http://nsrd.info

© Preston de Guise, 2015 165

23.2 Placement
Directives may be stored on either within the NetWorker server’s configuration and applied to
clients, or they may be stored as plain text files on clients, within any directory, so long as the
content of the directive applies to that directory or a subdirectory.

When stored on a client, directives use the following filename conventions:

• Unix/Linux/Mac OS X: .nsr
• Windows: nsr.dir

Note the preliminary dot in the .nsr filename for Unix/Linux/Mac OS X. This is essential.

Unless you have very specific reasons, you should always define directives within the NetWorker
server configuration and apply them to clients. This allows backup administrator control over the
directives.

A default NetWorker install will create some client-side directives, typically within the nsr directory
itself. For instance:

Figure 202: Directives created automatically by NetWorker

Feel free to examine any of the directive files established by NetWorker on a server, but be certain
not to modify them or you may cause problems with critical backup and recovery options such as
bootstrap (disaster) recoveries. For instance, the /nsr/res/.nsr file contains the following details:

logasm: *

You’ll note that for the client-side directive, the path has not been included. If the path isn’t
included client-side, it’s assumed to apply to the directory the directive is stored in. If the path is
included, it must be:

• Either the path for the directory the directive file is stored in, or
• The path for a subdirectory of the directory the directive is stored in.

http://nsrd.info

© Preston de Guise, 2015 166

Note that if any subdirectory is a mount point, the client side directive may not be automatically
applied from that point. (This limitation does not apply for server-side directives.)

23.3 Directive Examples
For this section, we’ll cover a few different examples of directives.

23.3.1 Scenario: Skipping Database files on Microsoft SQL Server
Consider a Microsoft SQL Server host where the active database data and log files are stored in
D:\Databases, but the NetWorker module for Microsoft Applications is used for database backups.

In this scenario, there’s no point trying to back these files up as part of the filesystem backup – if
VSS is fully integrated you might pick up a backup, but the files won’t be fully consistent with one
another and therefore unable to be used for recovery purposes. If VSS isn’t fully integrated, it may
just trigger a lot of errors about files being inaccessible for backup.

We can create a directive for this that looks like the following:

Figure 203: A directive for Microsoft SQL Databases

There’s a good reason why you create directives in NMC rather than say, using nsradmin. If we
look at resource for this directive you’ll see why:

Figure 204: How directives appear in nsradmin

http://nsrd.info

© Preston de Guise, 2015 167

Even Unix directives become ugly and cumbersome to work with in nsradmin quite quickly, but
Windows directives, where quotes, backslashes and colons may be required become very painful.
It’s best to leave them to NMC.

Once the directive is created, it can then be applied the client instance performing filesystem
backups.

23.3.2 Example: Skipping Multimedia Content
It may be that corporate policy is to not backup any multimedia content on a corporate fileserver.
It’s determined that the most likely files that could end up in this bucket have the following
extensions:

• .mp3
• .mp4
• .m4a
• .m4v
• .mov
• .wav
• .aiff
• .avi

In this case, the business requires that any file with that extension is not backed up, no matter
where it is on the fileserver. The directives for this would appear as follows:

Figure 205: Skipping multimedia content

Note:

The list of matching paths does not extend over multiple lines (i.e., there’s no carriage returns).

An alternate way of specifying this directive would be:

http://nsrd.info

© Preston de Guise, 2015 168

Figure 206: Alternate format for long directive lines

You may think this directive can only apply to a Unix system, since it specifies a path of “/”. That’s
not technically true. The “/” path, if specified in a directive applied to a Windows system will apply
to all drives and mount points. If you want to confirm that, consider a recovery session on
Windows:

Figure 207: Windows recovery session in the "/" path.

It should be noted that while the special savesets (SYSTEM STATE, etc.) appear at this level,
directives on Windows applied to the “/” path will not be applied to them. The directives are solely
applied to standard filesystems.

23.3.3 Example: Split Backups of a very large filesystem
For our final scenario, we’re going to consider an increasingly rare situation (given options such as
parallel save streams and block level backup), but one which is worth understanding, and that’s
when a filesystem is too large to perform a full backup in one session.

http://nsrd.info

© Preston de Guise, 2015 169

Consider a Unix system (we’ll unimaginatively call it ‘fileserver’) that hosts a corporate file share:

/fileshare

Underneath that directory, there’s a set of directories for each of the departments within the
organisation. For instance:

/fileshare/common
/fileshare/consulting
/fileshare/engineering
/fileshare/finance
/fileshare/human-resources
/fileshare/sales

In this scenario, it may be that several of the subdirectories of /fileshare are so large that if an
attempt to do a full backup on all of them at once were performed, it would take too long for the
backup to complete.

To get around the problem, the backup administrator might define the following client instances.
We’ll limit ourselves just to Daily groups to start with:

Client Name Save Set(s) Daily Group Schedule
fileserver All Daily OS Full Friday/Incr Rest
fileserver /fileshare/common Daily Fileserver Full Friday/Incr Rest
fileserver /fileshare/consulting

/fileshare/engineering
Daily Fileserver Full Saturday/Incr Rest

fileserver /fileshare/finance
/fileshare/human-resources

Daily Fileserver Full Tuesday/Incr Rest

fileserver /fileshare/sales Daily Fileserver Full Sunday/Incr Rest

In this scenario, the “Daily Fileserver” group would not have a level or schedule assigned to it,
meaning the schedules would be assigned to the individual client instances for ‘fileserver’ when
running. That way:

• Friday:
o All regular filesystems on ‘fileserver’ get a full backup
o /fileshare/common gets a full backup
o All other /fileshare/* directories get an incremental backup

• Saturday:
o All regular filesystems on ‘fileserver’ get an incremental backup
o /fileshare/consulting and /fileshare/engineering get a full backup
o All other /fileshare/* directories get an incremental backup

• Sunday:
o All regular filesystems on ‘fileserver’ get an incremental backup
o /fileshare/sales gets a full backup
o All other /fileshare/* directories get an incremental backup

• Tuesday:
o All regular filesystems on ‘fileserver’ get an incremental backup
o /fileshare/finance and /fileshare/human-resources get a full backup
o All other /fileshare/* directories get an incremental backup

There’s a seeming hole in that logic though – the ‘All’ save set would typically pick up all the
subdirectories of /fileshare. To avoid that, there are two options:

• Change the ‘All’ save set to an explicit list of all the other non-/fileshare savesets on the
host

http://nsrd.info

© Preston de Guise, 2015 170

• Configure directives for the ‘All’ client instance to exclude the /fileshare directory and all
its subdirectories.

The first option is reckless and not recommended for the simple reason that if another filesystem is
added to the server and the client instance is not updated, that filesystem will not get backed up31.

Based on the previous list of ASMs, you may think there are two options for excluding the/fileshare
contents from the ‘All’ client instance. Technically you’d be right, but only one option is practically
correct.

The incorrect method would be to use the skip directive for the ‘All’ client, viz.:

Figure 208: Where not to use the skip directive

The reason you wouldn’t use the skip directive is based on the previous explanation of it:

“Do not backup patterns that match, and do not include the parent
directory in the indices if nothing is going to be backed up.”

If you used this directive against the ‘All’ client instance, here’s what would happen:

Any time the client instance with the ‘All’ save set was run, the index information for the client for
that point in time would exclude the contents of the /fileshare directory. That means you’d have to
execute two recoveries to recover the entire server – one for everything else, then one for /fileshare.
You’ll also have to be able to pinpoint for recovery browsing those times when an appropriate
/fileshare/subdirectory backup had completed, but an ‘All’ style backup had not started.

For example, if you executed backups as follows with the skip option:

1. 21:00 – Backup of /fileshare/common
2. 22:55 – Backup of /fileshare/consulting and /fileshare/engineering
3. 23:55 – Backup of ‘All’ instance

A recovery browse operation executed after backup (3) had completed would show the /fileshare
directory as being empty.

31 I have seen many instances of the years where this has precisely happened. Sometimes filesystems have
gone months if not years without getting backed up.

http://nsrd.info

© Preston de Guise, 2015 171

Instead of using the skip option, the only appropriate, recovery compatible option is the null option:

Figure 209: Correct use of the null directive option

By comparison to the skip option, when the null option is run against the /fileshare directory,
NetWorker will keep index references in this backup to previously completed backups. Thus, you
could backup in any order without fear of surprise when a recovery is executed. For example:

1. 21:00 – Backup of /fileshare/common
2. 22:55 – Backup of /fileshare/consulting and /fileshare/engineering
3. 23:55 – Backup of ‘All’ instance

A recovery browse operation executed after backup (3) had completed would show the contents of
the /fileshare directory as of the time those subdirectories were most recently backed up.

http://nsrd.info

© Preston de Guise, 2015 172

Wrapping up

EMC NetWorker is an incredibly advanced enterprise backup product that has one of the most
important components required in enterprise software: an extensive command line interface.

Making use of NetWorker’s CLI, you can automate activities, generate custom reports, extend
control options and take control during serious challenges.

Practice makes perfect, however: the NetWorker CLI is best grasped by regularly using it. That’s
why having a lab environment you can practice in is absolutely critical to becoming a true
NetWorker power user. It doesn’t matter if the environment is entirely virtualised – it just matters
that you use it, and practice with it before diving into your production environment.

As for more involved backup control options (such as pre and post processing, and directives),
practice still makes perfect. Experiment with these options when you can so you can better
understand how to achieve your backup and recovery requirements most efficiently.

And remember: always have backups.

http://nsrd.info

© Preston de Guise, 2015 173

Further Reading

In addition to keeping a nearby copy of the official NetWorker documentation, you may want to
consider the following articles on the NetWorker Blog for expanded information to some of the
topics covered in this guide, or to provide additional information about more recent versions of
NetWorker:

Table 8: Recommended blog articles

Topic Link
Bypassing NetWorker for
media movement

http://nsrd.info/blog/2010/03/15/basics-bypassing-networker-for-
media-movement/

Checkpoint your backups http://nsrd.info/blog/2013/11/07/checkpoint-your-backups/

Client side compression
gets a squeeze

http://nsrd.info/blog/2012/07/31/client-side-compression-gets-a-
squeeze/

Debugging nsrmmd http://nsrd.info/blog/2010/10/28/debugging-nsrmmd/

Fixing NSR Peer
Information Errors

http://nsrd.info/blog/2009/02/23/basics-fixing-nsr-peer-information-
errors/

Introducing NetWorker 8 http://nsrd.info/blog/2012/07/11/introducing-networker-8/

http://nsrd.info

© Preston de Guise, 2015 174

Topic Link
Learning NetWorker http://nsrd.info/blog/2009/01/25/learning-networker/

LinuxVTL and
NetWorker

http://nsrd.info/blog/2010/10/14/new-micromanual-linuxvtl-and-
networker/

mminfo – savetime and
greater than/less than

http://nsrd.info/blog/2009/02/01/basics-mminfo-savetime/

mminfo and NOT queries http://nsrd.info/blog/2010/10/19/mminfo-and-not-queries/

New NetWorker
Technical Documents

http://nsrd.info/blog/2011/05/05/new-networker-technical-documents/

Recovering with scanner
and uasm

http://nsrd.info/blog/2009/04/22/recovering-with-scanner-and-uasm/

Setting cleaning tape
usage/registering a
cleaning tape

http://nsrd.info/blog/2009/03/09/basics-setting-cleaning-tape-
usageregistering-a-cleaning-tape/

Understanding skip vs
null directives in detail

http://nsrd.info/blog/2009/07/08/basics-null-vs-skip-directives/

What’s new in 8.2?

http://nsrd.info/blog/2014/06/30/whats-new-in-8-2/

http://nsrd.info

© Preston de Guise, 2015 175

Indices

http://nsrd.info

© Preston de Guise, 2015 176

Table of Figures
Figure 1: mminfo default output (24 hours backups) .. 11

Figure 2: Specifying an alternate order output for mminfo .. 12

Figure 3: Using a query and sort order .. 13

Figure 4: Querying on multiple clients .. 16

Figure 5: Query based on a date range .. 17

Figure 6: Narrowing down a query ... 18

Figure 7: mminfo query run from Windows .. 18

Figure 8: Example of mminfo queries using single quotes on Windows ... 19

Figure 9: mminfo -m output (disk volumes) ... 19

Figure 10: mminfo -m output (tape volumes) ... 20

Figure 11: mminfo -mv (verbose media report) output .. 20

Figure 12: Specifying report columns in mminfo ... 21

Figure 13: Specifying column width in report output ... 21

Figure 14: Getting the long-form saveset ID ... 22

Figure 15: Finding files on adv_file devices based on the long-form saveset ID 22

Figure 16: Using multiple width fields in a custom report ... 24

Figure 17: Producing a volume aging report ... 25

Figure 18: mminfo output featuring VBA virtual machine backups ... 25

Figure 19: mminfo's new VBA specific report output .. 26

Figure 20: Reporting using the 'vmname' and 'backup_size' options .. 26

Figure 21: Arbitrary field separation in mminfo reports ... 27

Figure 22: Producing comma-separated output from mminfo ... 27

Figure 23: XML mminfo output .. 28

Figure 24: Actual XML data content in mminfo XML output ... 29

Figure 25: Very verbose mminfo output .. 30

Figure 26: Sample volume-order output ... 33

Figure 27: Sample volume-order verbose output .. 33

Figure 28: Sample execution of custom Perl script, 'mminfo2html' .. 34

Figure 29: Sample output from mminfo2html ... 34

Figure 30: nsrinfo, a first look ... 36

Figure 31: Isolating saveset times in nsrinfo (1) .. 37

Figure 32: Isolating saveset times in nsrinfo (2) ... 38

http://nsrd.info

© Preston de Guise, 2015 177

Figure 33: Isolating saveset times in nsrinfo (3) .. 38

Figure 34: Identifying backup versions via recover .. 39

Figure 35: Identifying backup versions via nsrinfo ... 39

Figure 36: Using nsrinfo with the verbose flags .. 39

Figure 37: Using nsrinfo to view all files in a client index ... 40

Figure 38: Using nsrinfo on Unix to search for backed up files ... 40

Figure 39: Using nsrinfo on Windows to search for backed up files .. 40

Figure 40: Running gstclreport without an accessible Java environment ... 42

Figure 41: Running gstclreport with JAVA_HOME correctly established ... 42

Figure 42: Generating a basic report out of gstclreports ... 43

Figure 43: Determining gstclreport configuration options .. 44

Figure 44: Generating a report with gstclreport and custom configuration options 45

Figure 45: Dealing with date ranges in gstclreport (1) .. 45

Figure 46: Dealing with date ranges in gstclreport (2) ... 46

Figure 47: Dealing with date ranges in gstclreport (3) ... 47

Figure 48: Dealing with start dates only in gstclreport ... 47

Figure 49: Using nsr_render_log for a specific client and date/time range ... 49

Figure 50: Rendering a log on a system without the originating module .. 50

Figure 51: Configuring the runtime rendered log for a raw file ... 51

Figure 52: Options for nsrsgrpcomp ... 52

Figure 53: Extracting the most recent savegroup completion details with nsrsgrpcomp 52

Figure 54: Listing savegroup completion information for a specific group .. 52

Figure 55: Accessing details of a specific savegroup execution with nsrsgrpcomp 53

Figure 56: Obtaining a list of all available savegroup completion reports .. 53

Figure 57: Accessing details of a specific client and group ... 54

Figure 58: Running nsrsgrpcomp from a host other than the NetWorker server 54

Figure 59: Extracting summary information from nsrsgrpcomp ... 55

Figure 60: Refining nsrsgrpcomp summary output, by client .. 55

Figure 61: nsrwatch on a Unix platform .. 56

Figure 62: Running nsrwatch on Windows .. 57

Figure 63: More devices than nsrwatch will show .. 57

Figure 64: nsrwatch with limited screen space .. 58

Figure 65: Tabbing between different sections of nsrwatch .. 58

http://nsrd.info

© Preston de Guise, 2015 178

Figure 66: Viewing only mounted devices in nsrwatch .. 59

Figure 67: Default execution of nsrmm ... 61

Figure 68: nsrmm output showing combined tape/disk device status .. 61

Figure 69: Unmounting and mounting volumes with nsrmm .. 62

Figure 70: Mounting a volume in read-only mode with nsrmm .. 62

Figure 71: 'Remounting' a read-only volume as read-write .. 63

Figure 72: Labelling a volume using nsrmm ... 63

Figure 73: Labelling a volume without mounting it using nsrmm ... 64

Figure 74: Relabeling a volume with nsrmm .. 64

Figure 75: Automatically answering 'yes' to nsrmm prompts (dangerous) .. 64

Figure 76: Labelling a previously labelled volume into a new pool .. 65

Figure 77: Flagging a volume as being offsite ... 67

Figure 78: Marking a volume as recyclable ... 67

Figure 79: Saveset marked as recyclable via a volume being marked as recyclable 68

Figure 80: mminfo output showing browse and retention time for a saveset .. 69

Figure 81: Changing the browse and retention time for a saveset .. 69

Figure 82: Standard nsrjb output ... 70

Figure 83: Invoking nsrjb without options in a multi-jukebox environment .. 71

Figure 84: Invoking nsrjb against a specific jukebox .. 71

Figure 85: Using nsrjb with the verbose flag .. 72

Figure 86: Running a fast inventory operation .. 73

Figure 87: Using fast inventory when volumes have not previously been labelled 73

Figure 88: Using nsrjb with higher levels of verbosity .. 74

Figure 89: Performing a slow inventory using extended verbose mode .. 74

Figure 90: Limiting a jukebox inventory to specific slots ... 75

Figure 91: Limiting jukebox operations to a particular device .. 76

Figure 92: Basic jukebox reset command .. 76

Figure 93: Jukebox reset command when there are volumes to unload .. 77

Figure 94: Performing a media label operation ... 77

Figure 95: Viewing the status of the jukebox after a label operation .. 78

Figure 96: Recycling a volume into another pool ... 78

Figure 97: Using the recycle option against a recyclable volume ... 79

Figure 98: Performing a volume load operation .. 80

http://nsrd.info

© Preston de Guise, 2015 179

Figure 99: Performing a volume unload operation, by volume name ... 80

Figure 100: Loading a volume without mounting it ... 81

Figure 101: Withdrawing a volume into the CAP .. 82

Figure 102: Jukebox state after a withdraw operation ... 82

Figure 103: Performing a deposit operation .. 83

Figure 104: Standard inquire output ... 84

Figure 105: The inquire command with persistent device names .. 84

Figure 106: Output from sjisn ... 85

Figure 107: Inquire output showing second jukebox ... 86

Figure 108: Output from sjirdtag .. 86

Figure 109: Noting changes to reported information in sjirdtag .. 87

Figure 110: Using sjimm .. 88

Figure 111: NMC view of a NetWorker resource .. 89

Figure 112: NetWorker resource database as files and directories .. 90

Figure 113: NetWorker resource in plain text .. 90

Figure 114: Command line options for nsradmin .. 92

Figure 115: Running nsradmin on a client without referencing a server .. 92

Figure 116: Getting help from nsradmin .. 93

Figure 117: Getting help on individual commands with nsradmin .. 93

Figure 118: Determining valid configuration types in nsradmin .. 94

Figure 119: Viewing types for nsradmin against the client program .. 94

Figure 120: nsradmin help for the 'print' command ... 95

Figure 121: Displaying all policies on a NetWorker server ... 96

Figure 122: Viewing just policy names .. 97

Figure 123: Viewing a single policy in nsradmin ... 97

Figure 124: Turning off display restrictions and re-printing a query .. 98

Figure 125: nsradmin 'option' command .. 98

Figure 126: Viewing hidden details of NetWorker resources using the option command 99

Figure 127: Starting a group from within nsradmin ... 101

Figure 128: Setting the level of a group to 'full' always ... 102

Figure 129: Starting and then stopping a group ... 102

Figure 130: Checking the status of a group .. 103

Figure 131: Understanding the work list ... 103

http://nsrd.info

© Preston de Guise, 2015 180

Figure 132: Turning cloning on for a group .. 104

Figure 133: Group status while cloning .. 105

Figure 134: Using append instead of update ... 106

Figure 135: Specifying Windows save sets in nsradmin .. 106

Figure 136: The 'Month' policy .. 107

Figure 137: Viewing the different period types available to NetWorker policies 108

Figure 138: Creating Daily and Monthly policies .. 108

Figure 139: Viewing the newly created Daily and Monthly policies ... 109

Figure 140: Settings for the Default schedule .. 109

Figure 141: Creating the Daily schedule ... 111

Figure 142: Creating the Monthly schedule ... 112

Figure 143: Daily schedule as shown by NMC .. 112

Figure 144: Monthly schedule as shown by NMC .. 113

Figure 145: Viewing the Default group .. 114

Figure 146: Creating the Daily group ... 115

Figure 147: Creating the Monthly group ... 115

Figure 148: Viewing an existing client instance .. 116

Figure 149: Creating a new client in nsradmin ... 117

Figure 150: Second client create command in nsradmin ... 117

Figure 151: Viewing the Default pool in nsradmin ... 118

Figure 152: Creating the Daily pool in nsradmin .. 119

Figure 153: Creating the Daily Clone pool ... 120

Figure 154: Monthly pool .. 120

Figure 155: Monthly Clone pool .. 121

Figure 156: Configuring the Daily and Monthly groups to clone .. 122

Figure 157: Viewing a device in nsradmin .. 123

Figure 158: Viewing active devices using nsradmin ... 124

Figure 159: Deleting clients using nsradmin .. 125

Figure 160: Turning cloning off for groups ... 126

Figure 161: Deleting pools in nsradmin ... 127

Figure 162: Deleting the groups, schedules and policies ... 128

Figure 163: Bulk addition of clients to NetWorker using nsradmin ... 130

Figure 164: Performing a bulk delete in nsradmin ... 131

http://nsrd.info

© Preston de Guise, 2015 181

Figure 165: Running the create-policy.bat script .. 132

Figure 166: Script to create a new policy on using Perl .. 133

Figure 167: Bulk creation of resources to be used for scripting .. 135

Figure 168: Bulk creation of resources on Windows ... 135

Figure 169: New client script being executed on Linux ... 136

Figure 170: Executing the create-client script on Windows .. 137

Figure 171: Using nsradmin to view the NSRLA resource on a client ... 138

Figure 172: Viewing the peer certificate information for a client .. 139

Figure 173: Using regular expressions to show clients in nsradmin .. 140

Figure 174: How NetWorker interprets regular expressions when it isn't expecting them 140

Figure 175: Limitations with regular expressions in nsradmin ... 141

Figure 176: Running nsradmin in offline mode on Linux/Unix .. 142

Figure 177: Running nsradmin in offline mode on Windows .. 142

Figure 178: Standard nsrck output, starting in NetWorker 8.2 .. 144

Figure 179: NetWorker daemon log content from running nsrck –m ... 144

Figure 180: Using the nsrls command against the media database ... 145

Figure 181: Performing a basic index check .. 145

Figure 182: Performing a basic client file index listing/summary .. 146

Figure 183: Executing an nsrck -L3 ... 147

Figure 184: Performing an index rebuild against a client file index ... 147

Figure 185: Performing an index recovery .. 147

Figure 186: Default output of dbgcommand .. 151

Figure 187: ps output for nsrmmd processes ... 152

Figure 188: Generating device information using dbgcommand .. 152

Figure 189: Using the FlushDnsCache option for dbgcommand ... 154

Figure 190: Turning on debug mode level 9 .. 155

Figure 191: Debug log information ... 155

Figure 192: Turning debug mode off .. 155

Figure 193: Log file in use ... 156

Figure 194: Specifying pre and/or post commands in NetWorker 8.2+ .. 159

Figure 195: Configuring a client pre command .. 160

Figure 196: Results of pre command .. 161

Figure 197: Recovering a file transferred as part of a pre command ... 161

http://nsrd.info

© Preston de Guise, 2015 182

Figure 198: Savegroup completion report showing successful pre command execution 162

Figure 199: Pre command failure ... 162

Figure 200: Post command failure .. 162

Figure 201: 'core' directories on Linux servers ... 164

Figure 202: Directives created automatically by NetWorker .. 165

Figure 203: A directive for Microsoft SQL Databases .. 166

Figure 204: How directives appear in nsradmin ... 166

Figure 205: Skipping multimedia content .. 167

Figure 206: Alternate format for long directive lines ... 168

Figure 207: Windows recovery session in the "/" path. .. 168

Figure 208: Where not to use the skip directive ... 170

Figure 209: Correct use of the null directive option .. 171

http://nsrd.info

© Preston de Guise, 2015 183

Index of Tables
Table 1: Ordering options in mminfo .. 12

Table 2: Additional report fields .. 23

Table 3: Display toggle options in nsrwatch ... 58

Table 4: Options for limiting the extent of an nsrjb operation to particular volumes, slots or devices
 .. 75

Table 5: Standard nsrck check levels .. 146

Table 6: Scenarios for running nsrck index rebuilds ... 148

Table 7: Most common options in directives .. 164

Table 8: Recommended blog articles .. 173

